Acta Universitatis Carolinae

MEDICA MONOGRAPHIA CLXI ISBN

ISBN 978-80-246-4898-9 ISSN 0567-8250

HEMODYNAMIC ADAPTATION MECHANISMS OF HEART FAILURE TO PERCUTANEOUS VENOARTERIAL EXTRACORPOREAL CIRCULATORY SUPPORT

PAVEL HÁLA

CHARLES UNIVERSITY

Acta Univ. Carol. Med.

Acta Universitatis Carolinae Medica - Monographia CLXI - 2021

Hemodynamic Adaptation Mechanisms of Heart Failure to Percutaneous Venoarterial Extracorporeal Circulatory Support

Pavel Hála

Reviewers:

doc. MUDr. Štěpán Havránek, Ph.D. doc. MUDr. Ondřej Szárszoi, Ph.D.

Published by Charles University, Karolinum Press Prague 2021 Cover by Jaroslav Příbramský

© Charles University, 2021

ISBN 978-80-246-4898-9 ISBN 978-80-246-4899-6 (pdf) ISSN 0567-8250 MK ČR E 18589

Charles University Karolinum Press

www.karolinum.cz ebooks@karolinum.cz

Contents

A	ckno	wledgn	nents	5	
\mathbf{A}	bbre	viation	\mathbf{s}	7	
A	bstra	ct		9	
1	Intr	oducti	on	11	
	1.1	Heart	failure	11	
		1.1.1	Pathophysiology of HF	12	
		1.1.2	Integration of Cardiac and Vascular Changes	12	
		1.1.3	Compensatory mechanisms in HF	12	
		1.1.4	Clinical presentation	15	
		1.1.5	Therapy and prognosis	16	
		1.1.6	Acute management strategies	16	
	1.2	Heart	failure models	17	
	1.3	ECLS		18	
		1.3.1	Definition of ECLS	18	
		1.3.2	History of ECLS	19	
		1.3.3	Indications and incidence of ECMO	20	
		1.3.4	Anatomy of ECMO	23	
		1.3.5	Pathophysiology of VA ECMO	24	
		1.3.6	Monitoring of ECMO circuit	27	
		1.3.7	Complications of ECMO	27	
		1.3.8	Hemodynamics of VA ECMO	28	
2	$Hy_{\mathbf{I}}$	oothese	es	40	
3	Ain	ns		40	
4	Methodology				
	4.1	Anima	al model of chronic heart failure	41	
	4.2	Anima	al model of acute HF induced by regional coronary hypoxemia	44	
	4.3		l model of acute HF induced by global coronary hypoxemia		
	4.4		al model of right-sided HF	46	
	4.5	Experi	imental preparation and hemodynamic monitoring	48	
	4.6		entricular parameters and stroke work analysis	49	
	4.7	ECMC) instrumentation	50	

4.8 Experimental ECMO protocols and data acquisition			51		
	4.9	Statistical analysis	52		
5	Results				
	5.1	Characteristics of developed chronic HF model	53		
	5.2	Characteristics of acute HF model induced by regional coronary			
		hypoxemia	54		
	5.3	Characteristics of acute HF model induced by global coronary			
		hypoxemia	56		
	5.4	Characteristics of right-sided HF model	57		
	5.5	Effects of EBF on chronic HF	58		
	5.6	Effects of EBF on acute HF	64		
6	Dis	cussion	66		
	6.1	Comments on HF animal models	66		
	6.2	EBF effects on chronic HF	70		
	6.3	EBF effects on acute HF	73		
	6.4	Correlation of tissue saturation and perfusion	74		
	6.5	Effects of flow pulsatility	75		
	6.6	Clinical considerations	77		
	6.7	Study limitations	78		
7	Cor	nclusions	80		
8	List	of linked documents	81		
9	Ref	erences	83		

Acknowledgments

First of all, I would like to thank my tutor – professor Otomar Kittnar – who kindly supervised my postdoctoral studies and supported and motivated me in my work.

While learning about the principles of circulatory supports, facilities of the Experimental laboratory at Albertov became an amazing place where our initial ideas were transformed into real practice. In team cooperation with fellow laboratorians, scientists, and doctors, we were able to design and set novel experiments to help me understand and explain pathophysiological mechanisms of circulatory supports. It was a school of great value and pleasant nature at the same time.

I can hardly imagine to acquire better practical skills and medical knowledge than during my fellowship at Na Homolce Hospital. I found here inspiration for research and source of clinical observations, which come together with perfect leadership for my training.

An important period of my postdoctoral studies was connected to the Extracorporeal life support laboratory at the University of Michigan. During a long-term research fellowship, a valued cooperation was established and I was offered to participate in a broad spectrum of projects including cardiopulmonary resuscitation, organ preservation, or the applications of nitric oxide.

I endlessly value the facts that on this long and winding road many of my close friends helped and many of my colleagues became my friends. Without their little help, the presented work would never get by. A shared passion became our motivation for every day in the life of physiology, medicine, and research.

Abbreviations

ANP, BNP – atrial and brain natriuretic peptides

CO - cardiac output

 dP/dt_{max} – maximal positive pressure change

dP/dV – diastolic stiffness

Ea – effective arterial elastance

 \mathbf{EBF} – extracorporeal blood flow

ECLS - extracorporeal life support

ECMO – extracorporeal membrane oxygenation

EDA, ESA – end-diastolic and end-systolic area

 \mathbf{EDD} – end-diastolic diameter

EDP, ESP – end-diastolic and end-systolic pressure

EDV, ESV – end-diastolic and end-systolic volume

Ees – slope of ESPVR

EF – ejection fraction

ELSO – Extracorporeal Life Support Organization

FAC – fractional area change

HF - heart failure

HR - heart rate

LV – left ventricle

LVAD - LV assist device

MVO₂ – myocardial oxygen consumption

PE – myocardial potential energy

PI – pulsatility index

PV (loop) – pressure-volume (loop)

PVR – pressure-volume relationship

rSO₂ - regional tissue oxygenation

RV – right ventricle

SV – stroke volume

 SvO_2 – mixed venous blood saturation

SW – stroke work

TAPSE – tricuspid annular plane systolic excursion

VPO – ventricular power output

Abstract

Introduction:

Venoarterial extracorporeal membrane oxygenation (VA ECMO) is widely used in the treatment of circulatory failure, but repeatedly, its negative effects on the left ventricle (LV) have been observed. The purpose of this study is to assess the influence of extracorporeal blood flow (EBF) on systemic hemodynamic changes and LV performance parameters during VA ECMO therapy of decompensated heart failure.

Methods:

Porcine models of low-output chronic and acute heart failure were developed by long-term fast cardiac pacing and coronary hypoxemia, respectively. Profound signs of circulatory decompensation were defined by reduced cardiac output and tissue hypoperfusion. Subsequently, under total anesthesia and artificial ventilation, VA ECMO was introduced. LV performance and organ specific parameters were recorded at different levels of EBF using an LV pressure-volume loop analysis, arterial flow probes on carotid and subclavian arteries, and transcutaneous probes positioned to measure cerebral and forelimb regional tissue oxygen saturations.

Results:

Conditions of severely decompensated heart failure led to systemic hypotension, low tissue and mixed venous oxygen saturations, and increase in LV end-diastolic pressure. By increasing the EBF from minimal flow to 5 L/min, we observed a gradual increase of LV peak pressure, reduced arterial flow pulsatility, and an improvement in organ perfusion. On the other hand, cardiac performance parameters revealed higher demands put on LV function: LV end-systolic volume and end-diastolic pressure and volume all significantly increased (all P < 0.001). Consequently, the LV stroke work increased (P < 0.05) but LV ejection fraction did not. Also, the isovolumetric contractility index did not change significantly.

Conclusions:

In decompensated chronic and acute heart failure, excessive VA ECMO flow increases demands on left ventricular workload and can be potentially harmful. To protect the myocardium, VA ECMO flow should be adjusted with respect to not only systemic perfusion, but also to LV parameters.

Key words:

Extracorporeal membrane oxygenation; Heart failure; Hemodynamics; Heart ventricles; Artificial cardiac pacing