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INTRODUCTION

During the last 50 years, many new and interesting results have appeared in the
theory of conformal, geodesic, holomorphically projective, F -planar and others
mappings and transformations of manifolds with affine connection, Rieman-
nian, Kähler and Riemann-Finsler manifolds. The authors dedicate the present
monograph to the exposition of this topic.

Problems connected with this field were considered in many monographs,
surveys (pp. 613–619) and dissertation theses (pp. 620–621).

In the theory of geodesic, conformal and holomorphically projective map-
pings and some generalizations, three main directions have been specified:

• the investigation of general laws and rules;

• the integration of basic equations, and

• the investigations for special spaces.

Recently, new results that were not reflected in the papers mentioned above
have been obtained. On the one hand, some results of a general character, on the
other hand, results concerning mappings of special manifolds with affine con-
nection and Riemannian spaces, including spaces of constant curvature, Kähler,
Einstein spaces, conformally flat spaces, Klingenberg spaces, etc.

Many works have been dedicated to the problem of non-existence of con-
formal, geodesic and holomorphically projective mappings and transformations,
and concircular vector fields in spaces of a special kind. Such problems are often
closely related. However, much attention has not been paid to their investigation
yet. New results on the integration of basic geodesic mappings equations are
considered in the review [10, 12] and in the monograph [11] by A.V. Aminova.

We give the basic concepts of the theory of manifolds with affine connec-
tion, Riemannian, Kähler and Riemann-Finsler manifolds, using the notation
from [63,64, 140, 141, 143, 144, 164, 181, 196,199, 229].

Unless otherwise stated, the investigations are carried out in tensor form,
locally, in the class of sufficiently smooth real functions. The dimension n of
the spaces under consideration is supposed to be higher than two, as a rule.
This fact is not explicitly stipulated in the text. All the spaces are assumed to
be connected. Under Riemannian manifolds we mean both positive as well as
pseudo-Riemannian manifolds.

The book was edited by J. Mikeš. The book consists of 18 chapters. The
first sixt chapters of the book are of introductory character, and include also
some historical remarks.
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Chapter 1 CURVES and SURFACES in EUCLIDEAN SPACES . . . . . . . 23
treats the basic concepts of differential geometry of curves and surfaces in
Euclidean spaces. Particulaly, the problem of geodesic bifurcation
(Mikeš, Rýparová).

Chapter 2 TOPOLOGICAL SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
treats the basic concepts of topological spaces (Vanžurová, Mikeš).

Chapter 3 MANIFOLDS with AFFINE CONNECTION . . . . . . . . . . . . . . . 99
treats the theory of manifolds with affine connection. Particularly, the prob-
lem of semi-geodesic coordinates (Mikeš, Hinterleitner, Vanžurová).

Chapter 4 RIEMANNIAN and KÄHLER MANIFOLDS . . . . . . . . . . . . . . 137
is devoted to Riemannian and Kähler manifolds. Particularly, reconstruc-
tion of a metric (Mikeš, Vanžurová), equidistant spaces (Mikeš, Chepurna,
Chodorová,Hinterleitner), variational problems in Riemannian spaces (Mikeš,
Hinterleitner, Smetanová, Stepanova, Vanžurová), SO(3)-structure as a
model of statistical manifolds (Mikeš, Stepanova), decomposition of tensors
(Mikeš, Jukl, Juklová).

Chapter 5 MAPPINGS and TRANSFORMATIONS of MANIFOLDS . 213
is devoted to the theory of mappings and transformations of manifolds
(Mikeš). Among others we mention the problem of metrization of affine
connection (Vanžurová), harmonic diffeomorphisms (Stepanov, Shandra).

Chapter 6 CONFORMAL MAPPINGS and TRANSFORMATIONS . . . 267
treats conformal mappings and transformations. Especially conformal map-
pings onto Einstein spaces (Mikeš, Gavrilchenko, Hinterleitner, and other),
conformal transformations of Riemannian manifolds (Mikeš, Moldobayev).

Chapter 7 GM of MANIFOLDS with AFFINE CONNECTION . . . . . . . 289
is devoted to geodesic mappings (GM ). We stress geodesic equivalence of a
manifold with affine connection to an equiaffine manifold
(Mikeš, Hinterleitner).

Chapter 8 GM onto RIEMANNIAN MANIFOLDS . . . . . . . . . . . . . . . . . . . 307
We examine geodesic mappings onto Riemannian manifolds
(Mikeš, Berezovski, Hinterleitner).

Chapter 9 GM BETWEEN RIEMANNIAN MANIFOLDS . . . . . . . . . . . . 329
treats geodesic mappings between Riemannian manifolds.
Among others geodesic mappings of equidistant spaces, geodesic mappings
of Vn(B) spaces (Mikeš, Hinterleitner), and its field of symmetric linear
endomorphisms (Mikeš, Stepanova, Tsyganok).
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Chapter 10 GM of SPECIAL RIEMANNIAN MANIFOLDS . . . . . . . . . . 349
is devoted to geodesic mappings of special spaces, particularly Einstein,
Kähler, pseudo-symmetric manifolds and their generalizations
(Mikeš, Formella, Hinterleitner, Shiha, Sobchuk).

Chapter 11 GLOBAL GEODESIC MAPPINGS and DEFORMATIONS 377
treats global geodesic mappings and deformations, geodesic mappings be-
tween Riemannian manifolds of different dimensions (Stepanov), global
geodesic mappings (Mikeš, Chudá, Hinterleitner).
Geodesic deformations of hypersurfaces in Riemannian spaces
(Mikeš, Gavrilchenko, Hinterleitner).

Chapter 12 APLICATIONS of GEODESIC MAPPINGS . . . . . . . . . . . . . . 407
We give some applications of geodesic mappings to general relativity, namely
we present three invariant classes of the Einstein equations and geodesic
mappings (Stepanov, Jukl, Mikeš). Further, we deal with a differentiable
structure on elementary geometries (Mikeš with K. Strambach).

Chapter 13 ROTARY MAPPINGS and TRANSFORMATIONS . . . . . . . 433
treats rotary mappings and transformations of two-dimensional spaces
(Mikeš, Chudá, Rýparová).

Chapter 14 F-PLANAR MAPPINGS and TRANSFORMATIONS . . . . 449
treats F -planar mappings of spaces with affine connection
(Mikeš, Chudá, Hinterleitner, Peška).

Chapter 15 HOLOMORPHICALLY PROJECTIVE MAPPINGS . . . . . . 481
We examine holomorphically projective mappings (HPM) of Kähler mani-
folds. Among others fundamental equations of HPM, HPM of special Kähler
manifolds (Mikeš, Chudá, Haddad, Hinterleitner), HPM of parabolic Kähler
manifolds (Mikeš, Chudá, Peška, Shiha).

Chapter 16 ALMOST GEODESIC MAPPINGS . . . . . . . . . . . . . . . . . . . . . . 519
deals with almost geodesic mappings, which generalize geodesic mappings
(Berezovski, Mikeš, Vanžurová).

Chapter 17 RIEMANN-FINSLER SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . 545
is devoted to Riemann-Finsler spaces and their geodesic mappings (Bácsó),
geodesic mappings of Berwald spaces onto Riemannian spaces
(Bácsó, Berezovski, Mikeš).

Chapter 18 KLINGENBERG GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . 577
deals with applications of local algebras in geometry. We study free modules
(A-spaces) and their subspaces and submodules. We examine invariants of
λ-bilinear forms on A-spaces. Using properties of A-spaces, we study projec-
tive Klingenberg spaces, their submodules, subspaces and also homologies
and quadrics. Local algebra formalism in electromagnetic field theory is
presented. (Jukl).
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We would like to stress that we use here the classical definition of geodesics,
i.e. with a general parameter, which is widely used in applications in theoretical
physics. Further note that the definition of the Ricci tensor was splitted, since
1950’ its sign is used with an opposite sign, see [196]. We go back to the original
notation, L.P. Eisenhart [63].

Some parts of the text are based on several graduate courses on topol-
ogy, differential geometry, tensor analysis, Riemannian geometry, geodesic
mappings, holomorphically mappings and Lie groups given by N.S. Sinyukov,
M.L. Gavrilchenko and J. Mikeš at Mechnikov’s Odessa State University, and
differential geometry and topology by J. Mikeš and A. Vanžurová at Palacky
University in Olomouc.1)

The authors believe that the text might evoke interest and might be helpful
for post-graduate students in mathematics, geometry or physics as well as for
research-work specialists in these fields.

We would like to thank to prof. P.I. Kovalev for his corrections.
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1 CURVES AND SURFACES

IN EUCLIDEAN SPACES

First, let us give a brief motivation from Euclidean spaces.2)

What shall we understand under a curve? From the “static” point of view,
a curve can be considered as a particular point subset in the plane, in the
3-space, or on a surface in the space, which is “one-dimensional” in a certain
sense. Conics in elementary geometry, affine or projective algebraic curves in
algebraic geometry (considered as null-sets of polynomials) can serve as well-
known examples. In practice, we can see various arcs or curve segments on
various objects surrounding us: on trees and plants, on our furniture, buildings,
bridges, roads etc. On the other hand, in many situations, “curves” are drawn
up by “moving object” (imagine a car on a road, an airplane on the sky, a ray
of light, a moving particle in physics, various moving parts of machines etc.).
Curves arising in such a “dynamic” way can be nicely described by suitable
functions.

And how surfaces do arise? In real life, “surfaces” are often created by the
deformation of flat pieces followed by “glueing together”. A football-match ball
is sewed from pieces of leather, clothes are sewed from flat pieces of textile
material. A car body style is made from flat pieces of metal by deformation.
These examples give a pretty good inspiration for creating precise mathematical
definitions. In the language of functions, we are able to describe the situation
when a curve lies on a surface. Here we will focus on the behavior of the so-
called geodesic curves, that is, curves on surfaces or in spaces which, in a way,
play an analogous role as straight lines in a plane.

2) Euclid of Alexandria, 323–285 BC, was a
Greek mathematician often referred to as the
founder of geometry or the father of geometry.

1.1 Vector functions

1.1.1 Coordinates

Consider the three-dimensional Euclidean spaceE3

over a real vector space V3(R) endowed with a
dot product “ · ”. If we fix a point O in E3

which is called an origin, and an orthonormal ba-
sis E = 〈i, j, k 〉 in V3 then any vector p ∈ V3
determines a unique point A = O + p ∈ E3, and
vice versa, for any point A ∈ E3, we can create its
“radius-vector”

pA = A−O = OA
−−→ ∈ V3. (1.1)

xA

zA

yA

x

z

y

pA

O

A

i j

k
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Its expression pA = xAi+ yAj+ zAk with respect to the basis E gives rise to
the (bijective) map

f : R3 → E3, [x, y, z] 7→ O + x i + y j+ z k (1.2)

which is called a Cartesian3) coordinate system4); [xA, yA, zA] are Cartesian
coordinates of the point A.

In V3 we denote dot, cross and triple product 5): u · v , u × v and (u , v ,w),
for which

u ·v = xu xv+yu yv+zu zv, u×v =

∣∣∣∣∣∣∣

i j k

xu yu zu

xv yv zv

∣∣∣∣∣∣∣
and (u , v ,w) =

∣∣∣∣∣∣∣

xu yu zu

xv yv zv

xw yw zw

∣∣∣∣∣∣∣
.

A length of the vector u is defined |u | = √u · u =
√
x2u + y2u + z2u.

Obviously, the same construction works in arbitrary dimension n and gives
a way how to describe particular point subsets, such as curves and surfaces, by
means of vector functions6).

1.1.2 Vector functions, continuity and differentiability

Let Vn(R) be a real n-dimensional vector space with a dot product, and let
I ⊂ R be an open interval (often I = (0, 1), but not necessarily). Denote by |v |
the length of vector, |v | = √v · v =

√
v12 + · · ·+ vn2.

We say that v0 ∈ Vn is a limit of a vector function v : I → Vn at t0 ∈ I
if lim
t→t0
|v(t)− v0| = 0 holds, and we write

lim
t→t0

v (t) = v0. (1.3)

If lim
t→t0

v (t) = v0 holds (or if it holds for all t0 ∈ I), v is called continuous

at the point t0 (or continuous on the interval I, respectively).

If there exists a limit lim
t→t0

v(t)− v (t0)

t− t0
then this limit is called a derivation

of the vector function v(t) at t0, and it is denoted by v ′(t0) or

dv(t0)

dt
= v ′(t0) = lim

t→t0

v(t)− v(t0)

t− t0
. (1.4)

3)René Descartes, 1596–1650, the French mathematician and philosopher, an author of
La Géométrie. Cartesian means here related to Descartes who was also known as Renatus
Cartesius (Latinized form). Descartes was one of the key figures of the Scientific Revolution.
His influence in physics and mathematics is also apparent. Originally, Descartes introduced the
new idea of specifying the position of a point in a plane using two intersecting (perpendicular)
axes as measuring guides; among others, his discovery brings a method of how to connect
geometry and algebra. The new method influenced particularly analytic geometry, calculus,
and cartography. Later, the Cartesian coordinate system, used in both plane and space
geometry, was named after him. The idea of this system was developed in 1637 in two
writings by Descartes and independently by Pierre de Fermat (but Fermat did not publish his
ideas).

4)Sometimes, under a coordinate system one means its inverse f−1: E3 → R
3.

5)Often called inner (scalar), vector and mixed product, respectively.
6)Under a vector function on a set N ⊂ R

m, m ∈ N (with the definition domain N) we
mean a mapping N → V where V is a vector space.



1.2 Curves in Euclidean space 25

Obviously, v ′(t0) ∈ Vn is a vector. If v ′(t0) exists for all t0 ∈ I we get a new
vector function v ′ = v ′(t), v ′: I → Vn called a derivative of v . By iteration,
higher order derivates can be introduced.

With respect to an orthonormal basis 〈e1, e2, . . . , en〉 of Vn, we can write

v (t) = v1(t) e1 + · · ·+ vn(t) en (1.5)

for any t ∈ I. The real functions vi(t), i = 1, . . . , n, are called components of
the vector function; in short, we write v (t) = (v1(t), . . . , vn(t)).

In terms of components, the following useful description of continuity and
differentiability can be given: v(t) is continuous (continuous at t0 ∈ I, respec-
tively) if and only if all components vi(t) are continuous (are continuous at
t0 ∈ I, respectively). The derivative of v at t0 exists if and only if all compo-
nents have a derivative at t0, and if this is the case then

v ′(t0) =

(
dv1(t0)

dt
, . . . ,

dvn(t0)

dt

)
(1.6)

holds.
Similarly for higher order derivatives. We say that a vector function

v : I → Vn is of the class Cr on I, in short v ∈ Cr(I), if all components are
of the class Cr (as real functions) on I, that is, are continuously differentiable
up to order r. A vector function is smooth if derivatives of all orders exist, we
write v ∈ C∞(I), and (real) analytic, v ∈ Cω(I), if all components are real
analytic (i.e. each component possesses derivatives of all orders and agrees with
its Taylor series in a neighborhood of every point)7).

If the following derivatives α′(t),u ′(t), v ′(t),w ′(t) exist, then at a point t we
have:

(u ± v)′ = u ′ ± v ′, (α · u)′ = α′ · u + α · u ′,
(u · v)′ = u ′ · v + u · v ′, (u × v )′ = u ′ × v + u × v ′, (1.7)

(u , v ,w)′ = (u ′, v ,w) + (u , v ′,w) + (u , v ,w ′).

Let p(t) ∈ Cr(〈t0, t0 + h〉) and p(t) ∈ Cr+1((t0, t0 + h)), h > 0, then
Taylor’s formula of p(t) at t0 has the following form

p(t0+h) = p(t0)+p ′(t0)·h+
p ′′(t0)
2!
·h2+ · · · +p(r)(t0)

r!
·hr+R(p,t0)(h).

8) (1.8)

7)An analytic function is a function that is locally given by a convergent power series.
Another speaking, a function is analytic if it is equal to its Taylor series in some neighborhood
of any point.

Function f(x)=

{

e
−

1
x2 , x 6= 0,
0, x = 0,

is an example which belongs to C∞(R), and is not Cω(R).

This follows from f(0) = f ′(0) = · · · = f(n)(0) = · · · = 0. Evidently, Taylor series at point 0
does not converge to function f .

8)Remainder R(p,t0)(h) in the Lagrange and Euler forms have the following forms

R(p,t0)(h) =
hr+1

(r + 1)!
· (x1(θ1), . . . , x

n(θn)), θ1, . . . , θn ∈ (t0, t0 + h),

R(p,t0)(h) = o(hr) with Euler function o(τ): lim
τ→0

o(τ)

τ
= 0.

Taylor’s series of p(t) at t0: p(t0) + p ′(t0) · h+
p′′(t0)

2!
· h2 + · · · +

p(r)(t0)

r!
· hr + · · · .
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1.2 Curves in Euclidean space

1.2.1 Curves and parametrization of curves

Under a motion we understand a map p : I → En (usually, satisfying some addi-
tional differentiability conditions). Such a map will be later called a parametriza-
tion of a curve. This concept is a useful tool for describing a motion of a moving
particle (geometrically represented by a point) in the Euclidean three-space E3

as well as in En. After a slight modification of a definition, we can also represent
motions of points (moving particles) either on surfaces or in more general types
of spaces.

Note that in differential geometry, we usually prefer to view curves as
functions so that we can use methods and results of the Calculus. On
the other hand, sometimes it is more geometric to work with curves as
point subsets, that is, to consider images of parametrized curves, which
in fact represent paths, trajectories of motions. Therefore, we will keep
both viewpoints here, and use them alternatively according to the purpose.

p(t) p ′(t)ℓ

p(t)

O

If a parametrization (motion) p : I → En
is given in the Euclidean space, endowed with
a fixed coordinate system with the origin O,
the corresponding vector function p(t) is intro-
duced by p(t) = O + p(t), or equivalently, by
p(t) = p(t) − O. Due to the relationship be-
tween p and p , we can write in components
p(t) = (p1(t), . . . , pn(t)), t ∈ I (of course, if
p(t) = (p1(t), . . . , pn(t)), i.e. pi(t) are real func-
tions on I, which are components of the vector
function p .

Evidently, if p ′(t) is defined then it is independent on the coordinate system
(particularly of the choice of the origin O); for t fixed, p ′(t) is the velocity of
the motion and

|p ′(t)| =
√(

dp1

dt

)2

+ · · ·+
(
dpn

dt

)2

(1.9)

is the corresponding speed.

For a given motion p : I → En, we define its derivative p′(t) = (p(t),p ′(t))9)

for every t ∈ I (similarly for higher order derivatives). We can say that a
parametrization p is of the class Cr if p is of the class Cr. If r ≥ 1 and its
particular value is not so important we speak about differentiability only.

We say that a differentiable parametrization (amotion) p is regular ifp ′(t) 6=o ,
i.e. the velocity vector of a regular motion is a non-zero vector at any point.
If p ′(t0) = 0 then the point p(t0) is called a singular point of the parametriza-
tion p of curve ℓ.

9)See 2.1.4., tangent vector of a curve is an element of the tangent bundle TV ≈ R
n × R

n

of V ≈ TV .
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We say that a motion p : I → En is simple if p(t1) 6= p(t2) whenever t1 6= t2
(in a more geometric language, the trajectory of a simple motion does not
intersect itself).

A point subset ℓ ⊂ En (particularly, in a space E3 if n = 3) is some-
times called a simple curve (of class Cr) if there is a simple regular motion
p : I → En (of class Cr), p(t) = (p1(t), . . . , pn(t)), such that p(I) = ℓ. We call
p a parametrization of ℓ. The following can be checked (the proof is based on
the Implicit Function Theorem):

Two maps p(t) : I → En and p̃(τ) : J → En are parametrizations of the same
simple curve ℓ ∈ En (of the class Cr) if and only if there exists a bijective map
(of the class Cr) ϕ : J → I, ϕ(τ) = t such that p̃ = p ◦ ϕ, i.e. p̃(τ) = p(ϕ(τ)),
and dϕ/dτ 6= 0 on J . In short, the function ϕ(τ) = t is written as t = t(τ), its
inverse ϕ−1 as τ = τ(t), and each of them is called a regular transformation of
parameter . From the formula p̃(τ) = p(ϕ(τ)) it follows that the corresponding
tangent vectors are parallel.

Particularly, two parametrizations of the same simple curve differ up to a
strictly monotonous (differentiable) function, called regular parameter transfor-
mation. A parametrization p : I → En, s 7→ p(s) = (p1(s), . . . , pn(s)) of a
simple curve ℓ = p(I) is called natural (also parametrization by arc length s) if

|ṗ(s)| =
√
(ṗ1)2 + . . .+ (ṗn)2 = 1 (1.10)

for all s ∈ I10). Here and in what follows, in the case of natural parameter, we

denote ṗi = dpi

ds , i = 1, . . . , n, etc.
Recall that for arbitrary parametrization p(t) ∈ C1, arc length s of p(t) is

given by the formula

s(t) =

∫ t

t0

√
(dp1(τ)/dτ)

2
+ . . .+ (dpn(τ)/dτ)

2
dτ, t0 ∈ I. (1.11)

For any simple curve, a natural parametrization always exists and is determined
up to parameter transformations of the form s 7→ ±s + C, C ∈ R. From the
physical point of view, the motion along a naturally parametrized curve has the
(constant) unit speed.11)

Of course, many well-known “curves” are excluded under such a definition of
a simple curve: not only Cartesian Knot or Lemniscate of Bernoulli (because of
self-intersection) but also circles and ellipses. That is why we introduce a curve
(of the class Cr) as a subset ℓ ⊂ En such that for any point A ∈ ℓ there exists
its neighborhood U ⊂ En for which ℓ ∩ U is a simple curve (of the class Cr).
Parametrizations of the intersections ℓ ∩ U are local parametrizations of the
curve ℓ.

If p : I → En is a local parametrization of a curve ℓ ⊂ En we say that a
straight line determined in En by the point p(t0) and the vector p′(t0), t0 ∈ I,
is a tangent of ℓ in the point p(t0).

10)We identify p ≡ p.
11)Moreover, from (1.10) and (1.11) it follows, that for s1 < s2 the difference (s2 − s1) is

length of arc between p(s1) and p(s2). Evidently, the natural parameter s measures the length
of the arc of the curve and hence it is called the arc.
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For two intersecting curves, we introduce a relation which appears to be a
useful tool in what follows. Among others, it helps us to describe a tangent and
introduce the notion of an inflex point in a very elegant way.

Let ℓ, ℓ ⊂ En be two curves with a common point. Suppose they are given
by local parametrizations p(t) and p(t) respectively, on the same definition do-
main I for simplicity, and let the common point corresponds to the same pa-
rameter t0, Q = p(t0) = p(t0).

We say that ℓ and ℓ have a contact of k-th order at a point Q if all deriva-
tives12) up to order k coincide for the parameter t0,

dip(t0)

dti
=
dip(t0)

dti
, i = 1, . . . , k. (1.12)

We get an equivalence relation “to have contact of k-th order in a point” on the
class of curves.13)

It can be checked that the tangent of ℓ in the point Q is the unique line that
has a contact of 1st order with ℓ in Q, and two curves have a contact of the first
order in a common point Q if and only if they have a common tangent in Q.

We say that a point Q = p(s0) is a point of inflection, or an inflex point
of a curve ℓ ⊂ E

n given by a local natural parametrization p(s) if the tangent
in Q has a contact of second order with ℓ in Q. A point Q = p(s0) is a point
of inflection14) if and only if p̈(s0) = 0. As well known, a (simple) curve each
point of which is inflex is (a part of) a line.

1.2.2 Frenet frame and Frenet–Serret formulas

Let p(s) : I → E3 be a natural parametrization of a space curve of the class (at
least) C2. Let us assume a non-inflex point p(s), p̈(s) 6= 0. Denote by t(s)= ṗ(s)
the unit tangent vector, t(s) · t(s) = 1; we easily check that ṫ(s) · t(s)=0,
i.e. ṫ(s) = p̈(s) is orthogonal to t(s). The straight line determined by the
point p(s) and the vector ṫ(s) is called the principal normal of the curve at
the point p(s). There exists a number k(s) > 0 such that

ṫ(s) = k(s) · n(s) (1.13)

holds15) where n(s) is the unit vector of the principal normal at p(s) for which

n(s) =
ṫ(s)

|ṫ(s)| . (1.14)

12)The definition of the relation is correct: it depends neither on a particular choice of arc
length, nor on the fact that we use natural parametrization; it is, in fact sufficient to suppose
the existence of some local parametrizations, with the same argument and domain, such that
the derivatives in a common point coincide.
13)The class of this equivalence relation is called the k-jet; the jet calculus is widely used,

see e.g. [109].
14)Equivalently, if we assume an arbitrary parametrization p(t), the necessary and sufficient

condition for inflex point is: the vectors p′(t0) and p′′(t0) are collinear (linearly dependent),
i.e. they span a 1-dimensional subspace.
15)At points of inflection, we define k = 0. In this case ṫ(s) = o.
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Further, b(s) = t(s)×n(s) is the vec-
tor field of unit vectors on the binormals
of the curve. Then 〈t(s),n(s), b(s)〉 is a
(positive) orthonormal basis called the
Frenet frame or the moving frame. Also,
it is called generating Frenet’s moving
frame at any point if we take a frame as
〈p(s); t(s),n(s), b(s)〉. ℓ

p(s)

b(s)

t(s)

n(s)

For a curve p(s) free of points of inflection, the following holds (the so-called
Frenet, or Frenet–Serret formulas16)):

ṫ = k n
ṅ = −k t + κ b

ḃ = −κ n

(1.15)

where k(s) and κ(s) are (at least continuous) functions. That is, the first
derivatives of (vector) functions forming the Frenet moving frame are expressed
by the functions itselves. The Frenet-Serret formulas, in fact, describe the
kinematic properties of a particle which moves along a (differentiable) curve
in the three-dimensional Euclidean space E3, more specifically, the formulas
describe the derivatives (i.e. the changes during the motion) of the tangent,
normal and binormal vectors in terms of each other. At the same time, they
introduce two important functions connected with the curve, the so-called the
curvature k(s) and the torsion κ(s) of the curve p(s).

A point p(s0) is called planar if κ(s0) = 0. A curve is contained in some
plane if and only if all its points are planar.

For p(s) and p(t) ∈ C2, the following holds:

k(s) = |p̈| and k(t) =
|p′ × p′′|
|p′|3 , (1.16)

and for p(s) and p(t) ∈ C3, the following holds:

κ(s) =
(ṗ, p̈,

...
p )

k2
and κ(t) =

(p′, p′′, p′′′)
|p′ × p′′|2 . (1.17)

Physically, we can think of a space curve in E3 as being obtained from a
straight line by “bending” (curvature) and “twisting” (torsion). The equations

k = k(s) > 0, κ = κ(s) (1.18)

are called natural equations of the curve.
It can be checked that the local behaviour of the curve can be completely

described by k and κ. That is, any curve can be given by its natural equations
(and is “unique” up to an isometry):

16)Jean Frédéric Frenet, 1816–1900, described the formulas in his thesis of 1847.
Joseph Alfred Serret, 1819–1885, discovered the same formulas independently in 1851.
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Theorem 1.1 (Fundamental Theorem of the local theory of curves, see [4]17))
Let k, κ ∈ C0, k(s) > 0, κ(s), s ∈ I, be continuous18) functions. Then there
exists a regular parametrized curve p(s) defined on I such that s is the arc length,
k(s) is the curvature, and κ(s) is the torsion of p(s). Moreover, any other curve
c satisfying the same conditions differs from c by a rigid motion19).

Reconstruction of the curve p(s) of Theorem 1.1 which is defined by the
equations (1.17) is the solution of the Frenet-Serret system (1.15) together with
equation ṗ = t respective unknown vector functions p(s), t(s),n(s), b(s).

It is known, this system of ordinary differential equations has one and only
one solution for initial Cauchy conditions

p(s0) = (0, 0, 0), t(s0) = (1, 0, 0), n(s0) = (0, 1, 0), b(s0) = (0, 0, 1). (1.19)

1.2.3 Osculating circle, evolute and involute

The osculating circle k of a curve ℓ ∈ C2 at a given point p on the curve has
been traditionally defined as the circle passing through p and a pair of additional
points on the curve infinitesimally close to p. Its center S lies on the principal
normal line, and its curvature is the same as that of the given curve at that
point. This circle, which is the one among all tangent circles at the given point
that approaches the curve most tightly, was named circulus osculans (Latin for
kissing circle) by Leibniz. The osculating circle has the second order contact
with a curve.20)

The center and radius of the osculating circle at a given point are called cen-
ter of curvature and radius of curvature of the curve at that point. A geometric
construction was described by Isaac Newton in his Principia: There being given,
in any places, the velocity with which a body describes a given figure, by means
of forces directed to some common centre: to find that centre.

A set of curvatures centers of curve ℓ is called evolute. If L is evolute of ℓ
then ℓ is called involute of curve L.21)

ℓ

L

t

n

S
k

ℓ

Let ℓ: p = p(t) and L: p = P (t). An equation of evolute L of ℓ has the
following form

P (t) = p(t) +
1

k(t)
· n(t). (1.20)

17)Aleksandr Danilovich Aleksandrov, 1912-1999, was a great Russian mathematician.
18)It can be proven that the assumption is sufficient for the existence of a curve.
19)That is, there is an orthogonal (linear) transformation R of E3 with positive determinant

and a vector w such that ℓ = R ◦ ℓ+ w .
20)The point in which exists the third order contact is called a peak point of the curve.
21)There exist alternative definitions of evolute and involute.
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1.3 Surfaces in Euclidean space

1.3.1 Surfaces and simple surfaces (patchs)

If we wish to parametrize surfaces we meet analogous problems as we have al-
ready met for curves since most surfaces in the Euclidean three-space cannot be
globally parametrized by a unique function. First, we must choose a suitable
collection of “patches” so that each point of the surface belongs to at least one
member of them (i.e. we cover a surface by open neighborhoods, with “overlap-
pings”). Then we parametrize each patch “individually” (by an open domain
of the plane, that is, by means of two parameters). On a “nice” surface, we
can expect “nice transition functions” on overlappings of patches which in fact
determine coordinate changes; if the surface is “smooth enough”, we get differ-
entiable, or even smooth, transition functions on overlappings. A more precise
theory of surfaces can be made if we pass to the concept of a manifold (see
below).

Let D ⊂ R2 be an open connected sub-
set with coordinates (x1, x2), and let

p : D → E3, (x
1, x2) 7→ p(x1, x2) (1.21)

be an injective map of the class Cr, r ≥ 1,
from D to E3. For any point p(x1, x2), we
can create its radius-vector again,

p(x1, x2) = p(x1, x2)−O ∈ V3. (1.22)

O

p(x1, x2) S

(x1, x2)

p

In this way, we introduce a vector function p : D → V3 (for which partial
derivatives and Cr-differentiability were already introduced).

Define

pi =
∂p(x1, x2)

∂xi
, i = 1, 2. (1.23)

Higher order partial derivatives are introduced by iteration. If the additional
requirement (protecting non-existence of singularities) is satisfied: the vectors
p1 and p2 are linearly independent at any point of D we say that S = p(D)
is a two-dimensional “surface patch”, sometimes also called a simple or regular
surface in E3. D is called the parameter domain and the function p is called
a parametrization of the surface S. Since our further considerations keep local
character mostly the notion of a surface patch is quite adequate.

Throughout this subsection and the next section, let S denote a surface in
the above sense. Obviously, S can be given by its vector equation

p = p(x1, x2). (1.24)

The tangent plane TxS at the point x = p(x1, x2) ∈ S is an Euclidean plane

TxS = p(x1, x2) + span {p1(x
1, x2),p2(x

1, x2)}. (1.25)
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There exists a unique perpendicular to TxS
through x, called a normal of S at the point x.
The vector field

m =
p1 × p2

|p1 × p2|
(1.26)

is the so-called standard unit normal vector
field of the surface patch S.
The frame 〈p1,p2,m〉 is assumed to be positive.

x
p1

p2

m

1.3.2 First and second fundamental forms of the surfaces

Gauss22) introduced the first and the second fundamental form of the surface S
as follows:

I = gij dx
i dxj and II = bij dx

i dxj , (1.27)

with gij = pi · pj and bij = m · pij , (1.28)

where pij ≡ ∂jpi ≡ ∂ijp =
∂2p

∂xi∂xj
, i, j = 1, 2.

In the formula (1.27) and further, we will use the following notation.

Einstein summation convention: In formulas, symbols for sums are omit-
ted, and when the same index, e.g. i, occurs in the same expression twice, once
as a superscript and once as a subscript we understand that the expression de-
notes a sum of members of the same shape but with the index i varying from
1 to n (n either follows from the situation or must be settled). In our case n = 2.

1.3.3 Length of curves, angle between curves and area of surfaces

A curve ℓ on a surface S that is given by a parametrization p : D → S ⊂ E3,
can be determined by its curvolinear or inner coordinates xi = xi(t), that is,
by some mapping I → D with components x1(t), x2(t).

The arc length s of the arc AB
⌢

of curve ℓ ⊂ S (A = p(xi(t0));B = p(xi(t1)))
is expressed by the integral

s =

∫ t1

t0

√
gij(x(t)) ẋi(t) ẋj(t) dt. (1.29)

Evidently ds2 = I, therefore I and ds2 are called a metric of S, and are often
denoted by g. In classical notation, the metric form reads

ds2 = g11 dx
12 + 2g12 dx

1dx2 + g22 dx
22 =

2∑

i,j=1

gij dx
idxj = gij dx

idxj (1.30)

which turns S into a Riemannian space V2 = (S, g) = (S, ds2), see p. 137.

22)Johann Karl Friedrich Gauss, 1777–1855, was a German scientist and mathematician who
contributed to many fields, including analysis, statistics (Gaussian distribution), geodesy and
differential geometry (Gaussian curvature, Theorema Egregium), number theory (an author of
Disquisitiones Arithmeticae, finished 1798, published 1801), optics, astronomy, electrostatics.
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Let D ⊂ R2 be an open domain in S. Under an area of the domain p(D) ⊂ S
we understand

S =

∫∫

D

√
g11g22 − g212 dx1dx2. (1.31)

Let ℓ1 and ℓ2 be curves on surface S which intersect at the point p0 = ℓ1∩ ℓ2
and which have at p0 tangent vectors u = uαpα and v = vαpα, respectively.
An angle α between ℓ1 and ℓ2 at p0 can be calculated from the following formula

cosα =
u · v
|u | · |v | =

giju
ivj√

gijuiuj ·
√
gijvivj

. (1.32)

The angle between coordinate curves (x1 = t, x2 = x20) and (x1 = x10, x
2 = t)

are expressed
cosα =

g12√
g11 · g22

. (1.33)

From this follows that a criteria of orthogonal coordinate system is g12 = 0.

On arbitrary surface S, it is possible to locally introduce a special orthogonal
coordinate system, which is called an isothermal coordinate system [70, p. 128],
in which the first quadratic form is expressed

ds2 = f(x1, x2) (dx1
2
+ dx2

2
), (1.34)

where f(x1, x2) is a function.

Interesting Proof. Let surface S has the first quadratic form ds2=gijdx
idxj, thus

ds2 =

(√
g11 dx

1 +
g12 + i ·G√

g11
dx2
)
·
(√

g11 dx
1 +

g12 − i ·G√
g11

dx2
)
, (1.35)

where G =
√
g11g22 − g212 and i is the complex unit. There exists23) integrabi-

lity multiplicator ̺ for dw = ̺

(√
g11 dx

1+
g12 + i ·G√

g11
dx2
)
. Obviously, ̺ and

w are complex functions of (x1, x2), where w = u+ i · v. From (1.35) it follows

ds2 =
dw

̺
· dw
̺

=
1

̺ · ̺ (du2 + dv2) = f(u, v) (du2 + dv2).24) ✷

From the last formula it follows that any surface is locally conformal to Eu-
clidean plane, see p. 272. Gaussian curvature, see p. 38, in isothermal coordinate

system has the following form K = −∆ ln f

f
, where ∆ is Laplacian.25)

23)We find the solution of the formula dw = ̺(Adx+ Bdy) where A(x, y), B(x, y) are given
functions and w(x, y), ̺(x, y) are unknown complex functions. Evidently, dw = wx ·dx+wydy,
therefore it holds wx = ̺A and wy = ̺B. (1.36)

We found ̺ =
wx

A
=

wy

B
(the case A = 0 or B = 0 is trivial). Then we obtain

wxB − wyA = 0. (1.37)

The condition (1.37) is a homogenous linear partial differential equation respective unknown
function w for which there exist standard methods of solution, see [99, 100].

Moreover, if gij , A,B ∈ Cr (r ≥ 1) then exist w ∈ Cr and ̺ ∈ Cr−1, therefore f ∈ Cr−1.
24)We obtain complex coordinates z ∈ C on S for which S: p = p(z) and ds2 = f(z) dz dz.
25)∆ = ∂uu + ∂vv
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1.3.4 Gauss, Weingarten and Peterson-Codazzi formulas

For surface S ∈ C2 Gauss and Weingarten26) proved

pij = Γkijpk + bij ·m − Gauss formula,

mi = − bki pk − Weingarten formula,
(1.38)

where bki = bijg
jk, gij are components of dual tensor of g, i.e. ‖gij‖ = ‖gij‖−1,

Γijk = 1
2 (∂igjk + ∂jgik − ∂kgij) and Γhij = ghkΓijk (1.39)

are Christoffel 27) symbols of the first and the second types.
For surface S ∈ C3 from the integrability condition of PDE’s (1.38) with

respect to unknown pi and m, which are ∂kpij = ∂jpik and ∂jmi = ∂imj ,

Gauss and Peterson28), Mainardi29), Codazzi30) proved

R1212 = b11b22 − b212 − Gauss formula,
(1.40)

∂2bi1+Γ1
i1b12+Γ2

i1b22 = ∂1bi2+Γ1
i2b11+Γ2

i2b21− Peterson-Codazzi formulas31),

where Rhijk = ghαR
α
ijk and Rhijk = ∂jΓ

h
ik − ∂kΓhij + ΓαikΓ

h
αj − ΓαijΓ

h
αk (1.41)

are the components of Riemannian tensors of the first and the second kind.
From Gauss and Weingarten formulas (1.38) it elementary follows that sur-

faces which have identical first and second forms in common domain are iso-
metric, i.e. the same with precision to the location in the space E

3.
Moreover, the formulas (1.38) with (1.40) forms full integrability Cauchy

type PDE’s respective unknown vector functions p ,p1,p2,m which have only
one solution for initial conditions, for example, p(x0) = o, and for which
pi(x0) · pj(x0) = gij(x0), pij(x0) ·m(x0) = bij(x0). Then it follows

Theorem 1.2 (Bonnet theorem32) on the existence and the uniqueness of a
surface with given first and second fundamental forms, [36, 380])

Let the following two quadratic forms be given:

g11 dx
12 + 2g12 dx

1dx2 + g22 dx
22 and b11 dx

12 + 2b12 dx
1dx2 + b22 dx

22

the first one of which is positive definite, and let the coefficients of these forms
satisfy the Gauss equation and the Peterson-Codazzi equations (1.40). Then
there exists a surface, which is unique up to motions in space, for which these
forms are the first and the second fundamental forms, respectively.

26)Julius Weingarten, 1836–1910, was a German mathematician.
27)Elwin Bruno Christoffel, 1829–1900, was a German mathematician and physicist.
28)Karl Mikhailovich Peterson, 1828–1881, was a Russian mathematician. Peterson gave, in

his graduation dissertation (1853), but not published until later, in Derpt University (now
Tartu, Estonia). In 1879, the University of Odessa awarded him an honorary degree.
29)Gaspare Mainardi, 1800–1879, was an Italian mathematician.
30)Delfino Codazzi, 1824–1873, was an Italian mathematician.
31)The equations were first discovered by Peterson in 1853 and were rediscovered by Mainardi

in 1856 and Codazzi in 1867, see [176].
32)Pierre Ossian Bonnet, 1819–1892, was a French mathematician. He made some important

contributions to the differential geometry of surfaces, including the Gauss-Bonnet theorem.
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The question whether does exist a surface for which the positive form

g11 dx
12+2g12 dx

1dx2+g22 dx
22 is the first quadratic form, was studied in 1920s

by É.Cartan and M. Janet for real analytic functions, and by J.F.Nash33) for
n-dimensional Riemannian spaces, see [852] and [225, 531, 532].
Remark on the Isometric Embedding PDE. Let p:R2 → S ⊂ R

3. Saying that
p is an isometric embedding amounts to a system of fully nonlinear 1st-order
PDE for p = p(x1, x2) = (pi(x1, x2)). Namely, if (x1, x2) are local coordinates
for S and g = gij(x

1, x2) dxi dxj , then p is an isometric embedding if and only if

gij(x
1, x2) =

∂p

∂xi
· ∂p
∂xj

, i, j = 1, 2. (1.42)

This is a system of 3 equations for the 3 unknown components of p = (p1, p2, p3).

1.3.5 Isometry and Inner geometry

Recall that isometries are diffeomorphisms34) S → S which map curves in S
to curves of the same length in S (i.e. lengths of all curvolinear segments are
preserved).

It is obvious that a diffeomorphism f : S → S is an isometry if and only if
for any surface patch σ on S, the patches σ and f ◦ σ on S and S, respectively,
have the same first fundamental form, i.e. ds2 = ds2 (if we use the “common”
coordinates x on the image f(M) as on the preimageM , the metric on the image
under the isometry f has the same components gij(x) = gij(x)), [173, p. 101].

The inner geometry (also intrinsic geometry) of a surface includes all prop-
erties or objects of the given surface which are derived only from the first fun-
damental form (in practice, from components of the metric tensor g and their
derivatives), i.e. just those properties which are invariant under isometries.

Since the metric g = (gij) belongs to the intrinsic geometry, components
of the dual tensor g∗ = (gij) also belongs to the intristic geometry as well a
discriminant tensor ε and a structure tensor F defined by relations35)

εij =
√
g11g22 − g212 ·

(
0 1
−1 0

)
and Fhi = εij · gjh. (1.43)

It can be easily proved that the vectors v = vhph and Fv = Fhi v
iph are

orthogonal, and, moreover, they are of the same length |Fv | = |v |.
The Christoffel symbols (1.39) of the surfaces S ∈ C2 belong to the intrinsic

geometry, and for surfaces S ∈ C3 the Riemannian tensors (1.41), and Gaussian
curvatureK (Gauss Theorema Egregium, p. 38) belong to the intrinsic geometry
as well.

33)John Forbes Nash, 1928–2015, was an American mathematician who made fundamen-
tal contributions to game theory, differential geometry, and the study of partial differential
equations.
34)A diffeomorphism is a homeomorphism which is differentiable together with its inverse,

see 2.1.3.
35)The tensor ε is skew-symmetric and the tensor F defines a complex structure, for which

it holds F 2 = −Id. In addition, the metric tensor g, the dual tensor g∗, the discriminant
tensor ε, and the structure tensor F are covariantly constant.
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1.3.6 Normal, geodesic, principal, mean and Gauss curvatures

Let a curve ℓ : p = p(s) in a surface S ⊂ E3 be given by its inner coordinates

xi = xi(s), i = 1, 2, (1.44)

where s is a natural parameter (arc length).

Consider a (non-singular) pointM = p(s) of ℓ,
the vector kn located at M , and denote by A
the endpoint of the located vector, i.e.MA

−−→
= kn

(k is curvature and n unit principal normal of ℓ,

see (1.13)); sometimes, MA
−−→

is called the curva-
ture vector of ℓ at M .

Let MN
−−−→

be the projection of the vectorMA
−−→

onto a normal of the surface S at M , and simi-
larly letMG

−−−→
be the projection of the vectorMA

−−→
onto the tangent plane τ of S at M . Obviously,

kn =MA
−−→

=MN
−−−→

+MG
−−−→

; (1.45)

nm
ϕ

kn

N A

M G

MN
−−→

is called the normal curvature vector,

MG
−−−→

the geodesic curvature vector of ℓ at M , and their lengths

|kn| = |MN
−−−→| and kg = |MG

−−−→|, (1.46)

respectively are called the normal curvature and the geodesic curvature of ℓ on S,
respectively. From the technical reasons, at a non-flat point, kn itself is usually
considered with a sign: kn = |MN

−−−→| > 0 (with “plus”) if the vectors MN
−−−→

and m have the same direction (i.e., MN
−−−→

is a positive multiple of m) while

kn = −|MN
−−−→| < 0 (with “minus”) if the vectors MN

−−−→
and m have opposite

directions (i.e., MN
−−−→

is a negative multiple of m).
Evidently, the Meusnier formula kn = k ·cosϕ holds, and from (1.46) we get

k2 = k2n + k2g . (1.47)

Let us pass to coordinate expressions of the above concepts. If a surface S is
given by (1.21) and a curve on S is given by its curvolinear coordinates (1.24)
then the curve is described by its “vector equation” which is often written as

p(s) = p(x1(s), x2(s)).

We find

t =
dp

ds
=

∂p

∂x1
dx1

ds
+
∂p

∂x2
dx2

ds
= pi

dxi

ds

and
dt

ds
=
d2p

ds2
= pij

dxi

ds

dxj

ds
+ pi

d2xi

ds2
.

Since
dt

ds
= k n then from previous and the Gauss equations (1.38) it follows

k n =

(
d2xh

ds2
+ Γhij

dxi

ds

dxj

ds

)
ph + bij

dxi

ds

dxj

ds
m. (1.48)
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So we have obtained a decomposition of the curvature vector with respect to
the basis 〈p1,p2,m〉. Comparing (1.43) and (1.48) we conclude

MN
−−−→

= bij
dxi

ds

dxj

ds
m, and MG

−−−→
=

(
d2xh

ds2
+ Γhij

dxi

ds

dxj

ds

)
ph. (1.49)

According to (1.49), the normal curvature (i.e. the length of the vector MN
−−−→

equipped with a sign) is given by the formula

kn = bij
dxi

ds

dxj

ds
=
bij dx

idxj

ds2
=
bij dx

idxj

gij dxidxj
=
II

I
(1.50)

well-known from basic courses of differential geometry. From (1.50) it follows
that kn depends only at the point M and the direction (dx1, dx2).

On the other hand, kn is a curvature of a normal section at the point M on
the surface S. A normal section of the surface S at the pointM is a plane curve
which is an intersection of the a normal plane (at the point M and contains the
normal vector) and the surface S.

In our further considerations, the geodesic curvature will play the more im-
portant role. The formula for kg can be obtained e.g. if we calculate scalar
quadrat of (1.49). The expression reads

k2g =MG
−−−→2

=

(
d2xα

ds2
+ Γαij

dxi

ds

dxj

ds

)(
d2xβ

ds2
+ Γβpq

dxp

ds

dxq

ds

)
gαβ. (1.51)

Note that the geodesic curvature kg belongs to the intrinsic geometry of the
surface, which is almost obvious from the formula (1.50), and hence it is invariant
under an isometric deformation (by a “bending”) of the surface.

On the other hand, depending also on the second fundamental form of the
surface (on components bij), kn does not belong to the intrinsic geometry of the
surface, it can be changed under isometric deformations.

Given a fixed point Q of a surface S and a fixed line t tangent to S at Q
(i.e. lying in the tangent space to S at Q), there are infinitely many curves on
S passing through Q and having t as its tangent at Q. Curves of this family
have, in general, different curvatures k, but it appears that they have the same
normal curvature kn, see the comments of the formula (1.50). And the normal
section is uniquely determined by the line t and by the normal of the surface
at Q, hence is the same for all curves under consideration.

The maximum and minimum values of the normal curvature kn at a pointM
on a surface are called the principal curvatures k1 and k2, and their correspond-
ing directions are called principal. Euler36) proved the following formula

kn = k1 cos2 α+ k2 sin2 α , (1.52)

where α is an angle between the direction corresponding to k1 and kn.

36)Leonhard Euler, 1707-1783, was a greate Swiss mathematician and physicist, who was
tutored by Johann I. Bernoulli. He spent most of his adult life in Saint Petersburg, Russia,
and in Berlin, then the capital of Prussia. He was the chairman of Imperial Russian Academy
of Sciences, and Berlin Academy.
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The principal curvatures k1 and k2 are the solutions of characteristic equations

k2n − 2H kn +K = 0 (1.53)

where
H =

1

2
(k1 + k2) and K = k1 · k2 (1.54)

are the mean and the Gaussian curvature37), respectively. As it is known, these
curvatures are expressed in the following form

H =
g11b22 − 2g12b12 + g22b11

2 (g11g22 − g212)
and K =

b11b22 − b212
g11g22 − g212

. (1.55)

From the Euler formula (1.52) it follows

1

2
(kn(α) + kn(α+ π/2)) = H and

1

2π

∫ 2π

0

kn(α) dα = H, (1.56)

* in case k1 = k2 it holds kn = k1 = k2 (these points are called umbilical points
and, evidently, all directions there are principal), and

* in case k1 6= k2 (non umbilical points) there exist just two orthogonal prin-
cipal directions (corresponding to k1 and k2).

From (1.40) for S ∈ C3 it follows the

Gauss Theorema Egregium The Gaussian curvature K belongs to inner
geometry, and it holds

K =
R1212

g11g22 − g212
. (1.57)

Based on the sign of K, it was introduced the points classification: positive –
elliptic, negative – hyperbolic, and zero – parabolic, moreover if bij = 0 – planar.

The principal directions dp = pi dx
i can be calculated from differential equa-

tions ∣∣∣∣∣∣∣∣

dx2
2 −dx1dx2 dx12

g11 g12 g22

b11 b12 b22

∣∣∣∣∣∣∣∣
= 0. (1.58)

Direction dp is principal if and only if Rodrigues’ formula holds38)

dm = −kn dp. (1.59)

37)The Gaussian curvature K is often called total, and it was introduced by Euler in 1760,
see [71, p. 162].
38)Benjamin Olinde Rodrigues, 1795–1851, was a French banker, mathematician, and so-

cial reformer. Rodrigues was awarded a doctorate in mathematics on 28 June 1815 by the
University of Paris. His dissertation contains the result now called Rodrigues’ formula.
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The lines of curvature or curvature lines are curves which are always tangent
to a principal direction (they are integral curves for the principal direction
fields). Monge39) proved that a curve is line of curvature if and only if the
nearly normals of the surface lay in one plane.

The orthogonal coordinate system coordinate lines are curvature lines is
called principal coordinates. Criterium of principal coordinates is

g12 = b12 = 0. (1.60)

An asymptotic direction is one in which the normal curvature kn is zero.
An asymptotic curve is a curve which is always tangent to an asymptotic direc-
tion of the surface (where they exist). It is sometimes called an asymptotic line,
although it need not be a line.

From (1.50) equations of asymptotic directions and curves follow

bij dx
i dxj = 0, i.e. b11 dx

12 + 2b12 dx
1 dx2 + b22 dx

22 = 0. (1.61)

Asymptotic directions can only occur when the Gaussian curvature is nega-
tive (or zero). The direction of the asymptotic direction are the same as the
asymptotes of the hyperbola of the Dupin indicatrix40).

There are two asymptotic directions through every point with negative Gaus-
sian curvature, bisected by the principal directions. If the surface is minimal,
the asymptotic directions are orthogonal to one another.

In this case the coordinate system whose coordinate lines are asymptotic lines
is called asymptotic coordinates. Criterium of these coordinates is b11 = b22 = 0.

A minimal surface is a surface that locally minimizes its area, i.e. it is a
surface with the smallest area of all surfaces whose border is the given curve.
This is equivalent to having zero mean curvature H .41)

39)Gaspard Monge, 1746-1818, was a French mathematician, the inventor of descriptive ge-
ometry (the mathematical basis of technical drawing), and the father of differential geometry.
During the French Revolution he served as the Minister of the Marine.
40)Baron Pierre Charles François Dupin, 1784–1873, was a French mathematician, engineer,

economist and politician.
41)This is equivalent of following equation (1 + p2

1)p22 − 2p1p2 p12 + (1 + p2
2)p11 = 0.

The above partial differential equation was originally found in 1762 by Lagrange42) [689] and
Meusnier43) discovered in 1776 that it implied a vanishing mean curvature [746].

42)Joseph Louis Lagrange, 1736–1813, was an Italian and French greatest Enlightenment
Era mathematician and astronomer. He made significant contributions to the fields of analy-
sis, number theory, and both classical and celestial mechanics. The author of Mécanique
analytique.

43)Jean Baptiste Marie Charles Meusnier de la Place, 1754–1793, was a French mathe-
matician, engineer and Revolutionary general. He is best known for Meusnier’s theorem on
the curvature of surfaces. He also discovered the helicoid. He worked with Lavoisier on the
decomposition of water and the evolution of hydrogen.
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Evidently, a plane is a minimal surface. Let us state other examples of the
minimal surfaces

helicoid: x = u cos v, y = u sin v, z = a v, ds2 = du2+(a2+u2) dv2, (1.62)

catenoid: x = r cosϕ, y = r sinϕ, z = f(r), ds2 = r2dϕ2+
r2

1− r2 dr
2, (1.63)

where f(r) = a ln(th r
2a ).

The mapping between the helicoid and
the catenoid characterized by the relation

r =
√
u2 + a2, ϕ = v,

is isometric, therefore helicoid and catenoid
are (locally) isometric.

Let us note an interesting fact that he-
licoid and catenoid are the only minimal
surfaces that are ruled (also called a scroll)
surface and surface of revolution, respec-
tively.

Let the surface S be defined by equations z = f(x, y). Then

p1 = (1, 0, fx), p2 = (0, 1, fy), p11 = (0, 0, fxx), p12 = (0, 0, fxy), p22 = (0, 0, fyy)

m =
1√

1 + f2
x + f2

y

· (−fx,−fy, 1) =
∇−→(z − f)∣∣∣∇−→(z − f)

∣∣∣

g11 = 1 + f2
x , g12 = fxfy, g22 = 1 + f2

y ,

b11 =
fxx√

1 + f2
x + f2

y

, b12 =
fxy√

1 + f2
x + f2

y

, b22 =
fyy√

1 + f2
x + f2

y

I = (1 + f2
x)dx

2 + 2fxfydxdy + (1 + f2
y )dy

2 ,

II =
1√

1 + f2
x + f2

y

(
fxx dx

2 + 2fxy dxdy + fyy dy
2
)
,

S =

∫∫

D

√
1 + f2

x + f2
y dx dy.

H =
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

2 (1 + f2
x + f2

y )
3/2

, K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )
3/2
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1.4 Geodesics in surfaces

Among all curves passing through Q, we can distinguish those for which the
geodesic curvature vanishes. The class of all curves with kg = 0 appears to be
an interesting one; we will examine existence (and cardinality) below.

Definition 1.1 A curve on a surface is called a geodesic if its geodesic curvature
is zero everywhere.

1.4.1 Characterization of geodesics

The sense of the definition is as follows. Given a point of the surface S and a
fixed direction (given by a fixed tangent vector), from all curves passing through
the point in the given direction we distinguish those for which the curvature
(1.46) is a minimal one, since the summand kn is common for all such curves,
it is given by the shape of the surface, and cannot be “deleted”. Geometrically
speaking, from all curves on the surface, geodesics are most “straight” ones.

Since kg = 0 if and only if MG
−−−→

= 0, and MG
−−−→

is a vector projection of kn

onto the tangent plane, it follows that MG
−−−→

can vanish only in two cases:

(1) k n ‖m (2) kn = 0, i.e. k = 0. (1.64)

The second possibility indicates that the point is inflex.

Theorem 1.3 A curve in a surface is a geodesic if and only if for each of its
points the following is satisfied: either the principal normal coincides with the
normal of the surface at the point (i.e. is perpendicular to the tangent plane),
or the point is an inflex one.

The most familiar examples are the straight lines in Euclidean geometry; on
a sphere, the geodesics are the great circles.

Any part of a straight line on a surface is a geodesic according to (2). Con-
sequently, straight lines on surfaces are always geodesics, e.g. straight lines in
a (part of a) plane, on quadratic surfaces as a conus, cylinder, hyperboloid of
revolution or hyperbolic paraboloid, to mention the most famous examples.

Great circles on a sphere can serve as examples of geodesics satisfying the
above condition (1) since their principal normals pass through the center, hence
coincide with normals of the sphere. The shortest path from point A to point
B on a sphere is given by the shorter piece of the great circle passing through
A and B. If A and B are antipodal points (like the North pole and the South
pole), then there are infinitely many shortest paths between them. Such an
ambivalent situation arises on a cylinder as well.

Recall that kg belongs to the intrinsic geometry of a surface S, and does not
change under isometric deformations (which naturally remains true even in the
particular case kg = 0). It means that the concept of geodesic lines belongs to
the intrinsic geometry of a surface, and consequently, under isometric deforma-
tions, geodesics are transformed again into geodesics (which holds neither for
asymptotic curves nor for lines of curvature on surfaces, see p. 39).
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It is not difficult to give differential equations of geodesics. If we take into
account the formula (1.49) it is clear that MG

−−−→
= 0 for a geodesic if and only if

d2xh

ds2
+ Γhij

dxi

ds

dxj

ds
= 0, h = 1, 2. (1.65)

That is, we obtained a system of two ordinary differential equations of second
order of Cauchy type for functions x1(s), x2(s) of argument s. The second
derivatives of the functions xh(s) under consideration are expressed, according
to (1.65), via the functions themselves (they are composed with Γhij ) and their

first derivatives.44)

Analogously, an n-surface in En+1 can be defined, [215, p. 16], and a geodesic
on a n-surface can be introduced as a parametrized curve c : I → S whose
acceleration is everywhere orthogonal to S, it has no component of acceleration
tangent to the surface, [215, p. 40]. That is, acceleration serves only to keep it
in the surface. Roughly, a geodesic is a curve in S which always goes straight
ahead in the surface.

1.4.2 Existence and uniqueness of geodesics

Intuitively, it seems that given any point p in an n-surface S and any initial
velocity λp ∈ TpS there should be a geodesic in S passing through p with initial
velocity λp. The following theorem states that this is in fact the case, and that
the geodesic satisfying the “initial data” is essentially unique. It is in fact a
variant of the Frobenius Theorem. More precisely:

Theorem 1.4 (The existence and uniqueness theorem for geodesics)
Let S ∈ C3 be an surface in E3 (or an n-surface in En+1). Let p ∈ S be a point
and λp ∈ TpS a tangent vector at p. Then there exists a uniquely determined
geodesic γ which passes through this point p with the tangent vector λp at p.

The geodesic ℓ on I is called the maximal geodesic in S passing through p
with initial velocity λp, I is the maximal open interval in R (containing 0) on
which a geodesic with the given initial data can be defined (in general, I is a
proper subset of R).

Proof of this theorem follows from the theory of ordinary differential equa-
tions, by noticing that the geodesic equation is a second-order ODEs. Existence
and uniqueness then follow from the Picard-Lindelöf theorem for the solutions
of ODEs with the prescribed initial data; [90, pp. 32–33].

Let us denote λh(s) = dxh(s)/ds, then the system (1.65) can be written in
the form of first order system of ODEs

dxh(s)

ds
= λh(s),

dλh(s)

ds
= −Γhij(x(s))λi(s)λj(s). (1.66)

That is, according to the existence theorem for differential equations of the given

44)Remark that the formula (1.65) for geodesics was discovered by Christoffel in 1868.
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type, the system (1.66) admits (locally) a unique solution45) with initial data

xh(s0) = xh0 , λh(s0) = λh0 , h = 1, . . . , n. (1.67)

But on the geometric language, the initial data46) (1.67) mean that for any
point p0 = (x10, . . . , x

n
0 ), we can find a geodesic which passes through this point

and has the prescribed direction given by the vector λ0 = (λ10, . . . , λ
n
0 ), or even

having the prescribed velocity λ0 in it.
Another speaking, the set of geodesics on a surface behaves (in the well-

known sense) similarly as the set of lines in a plane. Which is not surprising since
lines in a plane represent a special case of geodesics on a 2-surface. Geodesics
form a two-parameter family of curves on a 2-surface.

Note that the theorem on existence of the solution of a system of differential
equations which was reffered to has a local character, and hence the existence
of a geodesic is guaranteed only in a neighborhood of a point (x10, . . . , x

n
0 ) of an

n-surface, n ≥ 2. But geodesics can be in fact prolonged on a surface either to
infinity, or up to the boundary of the surface, using repeatedly the cited theorem
and taking, as an initial point and initial vector, the end of the geodesic segment
already constructed and the tangent vector at it. Note that I may not be all of
R, as for example for an open disc in R2.

Let us come back to the system (1.65), n = 2. Its examining is rather
complicated by the fact that the parameter must have the geometric meaning
of arc length, so that the functions x1(s), x2(s) must satisfy, besides (1.65), also
the additional condition ds2 = gij dx

idxj .
Let us get rid of this obstruction. For this purpose, instead of the intrin-

sic equations (1.24), let us introduce the curve on a surface by an arbitrary
parameter t. Then s = s(t), t = t(s), and we find

dxh

ds
=
dxh

dt

dt

ds
=
dxh

dt

1

s′
, s′ =

ds

dt
,

d2xh

ds2
=
d2xh

dt2
1

s′
− dxh

dt

s′′

s′3
.

Now substituting these expressions to (1.65) we get

d2xh

dt2
+ Γhij

dxi

dt

dxj

dt
= σ(t)

dxh

dt
. (1.68)

Here the function σ(t) = s′′/s′.
On the other hand, for a curve x = x(t) which satisfies (1.68) for some

function σ(t)∈C0, there exists a parametrization with a parameter, let us say, s,
under which the equations take the form (1.65).

It is obvious that the system (1.65) has its advantages in comparison with
(1.68). Both systems are equivalent with respect to the object they define, that
is, with respect to geodesic lines. We use one or the other representation of
geodesics according to the actual mathematical purpose.

45)For Γh
ij ∈ C0 (that is, S ∈ C2), the Cauchy problem (1.66) and (1.59) has solution, and

for Γh
ij ∈ C1 (that is, S ∈ C3), the existence of a unique solution is guaranteed.

46)Called also Cauchy conditions sometimes.
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Now let us rewrite equations for geodesics in another form which appear to
be very useful in further considerations. Let us write the equation (1.68) with
h = α, then once more with h = β, and eliminate the terms with σ(t). We get

d2xα

dt2
dxβ

dt
− d2xβ

dt2
dxα

dt
+

(
Γαij

dxβ

dt
− Γβij

dxα

dt

)
dxi

dt

dxj

dt
= 0. (1.69)

It can be easily seen that (1.68) and (1.69) are equivalent, and the advantage of
(1.69) is that σ(t) is excluded.

Remark that if we work with systems similar to those in (1.65), (1.68) and
(1.69) (or coming below), we always suppose that differentiability conditions
necessary for application of existence theorems are always satisfied.

1.4.3 Semigeodesic coordinates

On arbitrary surface S it is possible to locally introduce a special orthogonal
coordinate system, which is called an semigeodesic coordinate system, in which
the first quadratic form is expressed by

ds2 = dx1
2
+ f(x1, x2) dx2

2
, (1.70)

where f(x1, x2) (> 0) is a function.
We can convince ourselves that x1-curves are geodesics. By the analysis of

these geodesics it easy to see that they are the (locally) shortest curves. In
detail, see pp. 148-149.

In this coordinate system non-vanishing components:

g11 = g11 = 1, g22 = (g22)−1 = f(x1, x2),

Γ1
22 = − 1

2 ∂1f, Γ2
12 = Γ2

21 = ∂1 ln
√
f, Γ2

22 = ∂2 ln
√
f, K = −∂11(

√
f)√

f
.

1.4.4 Geodesic bifurcations

If the Christoffel symbols are continuous, then geodesics exist for above men-
tioned. We demonstrate an example of connections whose components are not
differentiable, but geodesics have common properties, that is there do not exist
bifurcations.

Bifurcation of geodesic is studied in [1041]. There, bifurcation is described
as situation where (different) geodesics go through one point and have different
tangent vectors. We show bifurcation of geodesics on surfaces of revolution,
where two different geodesics go through the same point and have the same
tangent vector.

Let S2 be a surface of revolution given by the equations:

x = r(u) cos v, y = r(u) sin v, z = z(u) (1.71)

where v is parameter from (−π, π), u ∈ I ⊂ R and I = 〈u1, u2〉.
In these equations we exclude meridian corresponding to coordinate v = π.

Naturally, we also exclude “poles” which correspond to r(u) = 0.
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Rotational surface S given by equations (1.71) has the following metric form

ds2 =
(
r′

2
(u) + z′

2
(u)
)
du2 + r′

2
(u) dv2.

Let us choose parameter u as a length parameter of forming curve (r(u), 0, z(u))

then r′2(u) + z′2(u) = 1. In this case, metric of surface S is simplified

ds2 = du2 + f(u) dv2, (1.72)

where f(u) = r2(u), i.e. nonzero components of metric and inverse tensors are

g11 = g11 = 1 and g22 = (g22)
−1

= f(u). Non-vanishing Christoffel symbols

of first kind are Γ122 = Γ212 =
1

2
f ′(u) and Γ221 = −1

2
f ′(u) and nonzero

Christoffel symbols of second kind are

Γ1
22 = −1

2
f ′(u) and Γ2

12 = Γ2
21 =

1

2

f ′(u)
f(u)

. (1.73)

Further, let u ≡ x1 and v ≡ x2. The equations (1.65) of geodesics on
surface S can be written in the following form:

ü =
1

2
f ′(u) v̇2, v̈ = −f

′(u)
f(u)

u̇ v̇. (1.74)

Because s is parameter of length, tangent vector of these geodesics is unitary,
i.e. first integral applies: u̇2 + f(u) v̇2 = 1.

Trivially, we verify that u-coordinate curves (u = s, v = const , i.e. meri-
dian) are geodesic. In general, the same does not apply for the v-coordinates,
v-curves are geodesic if and only if f ′(u) = 0 (they are also called gorge circles).

Further, let us study geodesics, which are none of the mentioned above.
Suppose that v(s) 6= 0, i.e. v̇(s) 6= 0. Then we can rewrite second equation of

(1.66) in form
v̈

v̇
= −f

′(u)
f(u)

u̇. After modification and integration by s we get:

v̇ =
C1

f(u)
, u̇ =

√

1− C1
2

f(u)
, C1 ∈ R (1.75)

Finally, the equations (1.75) determine system of the differential equations of
the first order. ✷

Now we construct example of rotational surface S, where above mentioned
bifurcation exists, see Rýparová, Mikeš [920].

Example 1.1 Let S be a surface of revolution with functions

r(u) =
1√

1− u2α
(
⇒ f(u) =

1

1− u2α
)
, u ∈ (−1, 1). (1.76)

The function r must to be differentiable so the Christoffel symbols exist
and equations of geodesics can be written. On the other hand, the Christoffel
symbols can not satisfy the Lipschitz condition and, of course, can not be dif-
ferentiable (there would be an unique solution and bifurcation would not exist).
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Theorem 1.5 On above mentioned surface of revolution S there exist geodesic
bifurcations for α ∈ (0.5, 1).

Proof. The statement can be proved by existence of geodesics given by the
equations:

I. u = 0, v = s

II. u =
(
(1− α) s

) 1
1−α , v = s−

(
(1 − α) s

) 1+α
1−α

1 + α
.

(1.77)

We can verify that curves given by the equations (1.66) are geodesics by direct
substitution to fundamental equations (1.66).

These two geodesics go through the same point (0, 0) and have the same
tangent vector (0, 1). The consequence is that through this point in this direction
goes infinite number of geodesics and the gorge circle (mentioned above) is one
of them. ✷

Example 1.2 If we set f(u) = − 1

1− u2α then the metric will be indefinite

and the equations (1.77) describe a geodesic bifurcation on a pseudo-Riemannian
space. Moreover, in [921] Rýparová and Mikeš construct closed geodesics with
bifurcations.

1.4.5 Gauss-Bonnet Theorem

Finally, we present the Gauss-Bonnet
Theorem without proof, which is un-
doubtedly one of the deepest (and even
the most beautiful) results differential
geometry of surfaces.
Gauss-Bonnet Theorem
Let M be an area of the surface S with
boundary ∂M that is constructed with
the curves c1, . . . , cr. These curves in-
tersect under the angle αi at a common
point (see picture). Then

S

∂M
M

ci+1

ci αi

r∑

i=1

αi = (r − 2)π +

∫∫

M

Kdσ +

r∑

i=1

∫

ci

kgds, (1.78)

where kg and K are the geodesic and the Gauss curvature, respectively, ds and
dσ are the differential of length and area, respectively. 47)

If M is a geodesic polygon, i.e. the curves ci are geodesics, then

r∑

i=1

αi = (r − 2)π +

∫∫

M

Kdσ. (1.79)

47)The area M does not contain a “ hole ” of surfaces S (we will not specify this term).
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If S is a surface with constant curvatureK then
r∑

i=1

αi = (r − 2)π +K · vol(M),
where vol(M) is an area of M .

For geodesic triangle on surfaces with constant curvature K we obtain

α+ β + γ = π +Kvol(∆). (1.80)

For example, surfaces with constant curvature are

plane: p = (u, v, 0), K = 0,

sphere: p = r · (cos u cos v, cosu sin v, sinu), K = 1/r2,

pseudosphere: p = r · (cos u cos v, cosu sin v, cosu+ ln(tan(u/2))), K = −1/r2.

γ

α γ

β

α

β

α

β γ

Pseudosphere Plane Sphere
α+ β + γ < π α+ β + γ = π α+ β + γ > π

The above inequalities apply to the geodesic triangles of the surfaces with con-
stant curvature.

It is said that the above inequalities were examined by Gauss as part of the
geodetic triangulation of Germany, and by Lobachevsky in the framework of his
star observation, but they were within the scope of observational errors.

This was associated with the emergence of the non-euclidean geometry which
was founded by Lobachevsky48), Bolyai49) and Gauss. The geometry con-
structed by these authors is now called hyperbolic or Lobachevskian geometry.

In 1868, Beltrami [351] proved that the surfaces of negative constant cur-
vature are part of the Lobachevsky plain. Poznyak’s and Popov’s50) papers
[171, 886–891] are dedicated to a detailed study of the Lobachevsky plain, see
the monograph by Popov [168].

These results are connected with the Beltrami Theorem, see p. 350, which
states that spaces with constant curvature are projective Euclidean.

48)Nikolai Ivanovich Lobachevsky, 1792-1856, a Russian mathematician and physicist, the
rector of the Kazan University from 1827 to 1846, who formulated (in 1826) and published (in
1829) basic ideas of non-Euclidean hyperbolic geometry (called also Lobachevsky geometry).
He was influenced by Johann Christian Martin Bartels, 1769-1836, a former teacher and friend
of Gauss.
49)János Bolyai, 1802–1860, a Hungarian soldier and mathematician, a son of the mathe-

matician Farkas Bolyai who also studied at Bartels. Between 1820 and 1823 J. Bolyai prepared
a treatise on a complete system of non-Euclidean geometry, independently of the results of
Lobachevsky. Bolyai’s work was published in 1832 as an Appendix to a mathematics textbook
by his father. As a matter of interest, let us mention that as a soldier, during his military
service, J. Bolyai was for a short time (1832–1833) a member of a garrison also in Olomouc
(Czech Republic, germ.: Olmütz), this fact is reminded by his memory desk under his bust
at the Army House in Olomouc.
50)Eduard Genrikhovich Poznyak, 1923-1993, and Andrey Gennadievich Popov, 1962-2014,

are Russian mathematicians of Faculty of Physics, Lomonosov Moscow State University.
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1.4.6 Gnomonic and stereographic projections

In geometry, the gnomonic and stereographic projections are particular map-
pings which project a half-sphere or a sphere respectively onto a plane. In the
gnomonic projection, the center of projection is in the center of the sphere.
In the stereographic projection, the center of projection is on the sphere.

S

M

f(M)

S

M

f(M)

α

α

Gnomonic projection Stereographic projection

It is often stated that the Gnomonic projection is the oldest of all cartographical
projections.

It was used in the 6th century BC by Thales of Miletus51) to describe star
constellations. Thales is considered an author of this projection. Since the
16th century, the gnomonic projection is used to describe the surface of Earth.
Currently, it is used for navigational maps and the present name “gnomonic”
comes from the 19th century. This projection is an important example of the
geodesic mappings discussed in Chapters 8-12.

The stereographical projection was used by Hipparchus of Nicaea52) in the
2nd century BC, and Claudius Ptolemy53) in the 2nd century. The use was
mainly for star maps and from the 16th century for the image of Earth’s hemi-
spheres. Current name “stereographical” comes from the 17th century. This
projection is conformal, i.e. it preserves angles. In 1779, the first non-trivial
examples of conformal mappings were discovered by Lagrange [120], namely the
stereographic projection of a sphere.

Several important cartographic projections, including the Mercator54) pro-
jection, are conformal maps. It is known, p. 33, that locally any surface can
be mapped conformally onto the Euclidean plane. Chapter 6 is dedicated to
conformal mappings of Riemannian spaces.

51)Thales of Miletus, 624/623-548/545 BC, was a pre-Socratic Greek philosopher, mathe-
matician, and astronomer from Miletus in ancient Greek Ionia.
52)Hipparchus of Nicaea,190-120 BC, was a Greek astronomer, geographer, and mathemati-

cian. He is considered the founder of trigonometry but is most famous for his incidental
discovery of precession of the equinoxes.
53)Claudius Ptolemy, 100-170, was a Greco-Roman mathematician, astronomer, geographer

and astrologer, lived and worked in Alexandria, Egypt.
54)Gerardus Mercator, 1512-1594, was a 16th-century Southern Dutch (current day Belgium)

cartographer, geographer and cosmographer. He was renowned for creating the 1569 world
map based on a new projection which represented sailing courses of constant bearing (rhumb
lines) as straight lines – an innovation that is still employed in nautical charts.
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1.4.7 Motivations and applications

In mathematics, a geodesic is a generalization of the notion of a “straight line”
to “curved spaces”. In presence of a metric, geodesics are defined to be (locally)
the shortest paths between points on the space. In the presence of an affine
connection, geodesics are defined to be curves whose tangent vectors remain
parallel if they are transported along it.

The term “geodesic” comes from geodesy, the science of measuring the size
and shape of Earth; in the original sense, a geodesic was the shortest route
between two points on the Earth’s surface, namely, a segment of a great circle.
The term has been generalized to include measurements in much more gene-
ral mathematical spaces; for example, in graph theory, one might consider a
geodesic between two vertices (nodes) of a graph.

Geodesics are commonly seen in the study of Riemannian geometry and
more generally metric geometry.

In physics, geodesics describe the motion of point particles; in particular, the
path taken by a falling rock, an orbiting satellite, or the shape of a planetary
orbit are all described by geodesics in the theory of general relativity. More ge-
nerally, the topic of sub-Riemannian geometry deals with the paths that objects
may take when they are not free, and their movement is constrained in various
ways.

Let us mention two theorems from mechanics which clarify natural character
of geodesics, and at the same time demonstrate their importance [120].

Theorem 1.6 On any smooth surface, an elastic band stretched between two
points will contract its length, and the resulting shape of the band is a geodesic.

In fact, let us connect two points of an “absolutely” smooth surface by
an elastic band (rubber band, binder). The elasticity forces of such a band are
oriented in the direction of the tangent line in a particular point. In the theory of
elasticity, one proves that the resulting force of the elasticity forces at any point
of the band is involved in the osculating plane (of the curve which represents the
band), in which also kn is included. On the other hand, the resistence force of
the absolutely smooth surface could be oriented only in direction of the normal
of the surface. If the band is balanced then the result of the elasticity forces is in
balance with the resistence force of the surface. Therefore the osculating plane
of the band must involve the normal of the surface. But in this case, the normal
of the surface and the principal normal of the band are parallel (since they
belong to the same plane, pass through the same point, and are perpendicular
to the tangent of the band curve). That is, the principal normal of the band
coincides with the normal of a surface at any point which means, according to
Theorem 1.3 that the band takes the form of a geodesic.

There is another interesting mechanical interpretation of geodesics, [173,
p. 172]:

Theorem 1.7 A particle moving on the surface, and subject to no forces except
a force acting perpendicular to the surface that keeps the particle on the surface,
would move along a geodesic.
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In fact, the only force acting on the mass particle is the resistence of the
surface, which has always direction of the normal of the surface. According to
the main theorem of dynamics, the resistence of the surface is proportional to the
acceleration of the motion, and acceleration is always parallel to the osculating
plane. That is, the osculating plane involves the normal of the surface. We get
the same situation as in Theorem 1.6, i.e. the trajectory of motion is a geodesic.

In the calculus of variations, one proves that the shortest path between two
points in a curved space can be found by writing the equation for the length of
a curve, and then minimizing this length using standard techniques of calculus
and differential equations. We will postpone details of this view-point to the
next chapter.

Equivalently, a different quantity may be defined, termed the energy of the
curve; minimizing the energy leads to the same equations for a geodesic. In-
tuitively, one can understand this second formulation by noting that an elastic
band stretched between two points will contract its length, and in so doing will
minimize its energy; the resulting shape of the band is a geodesic, as already
mentioned.



2 TOPOLOGICAL

SPACES

2.1 From metric spaces to abstract topological spaces

We intend to work here with spaces that are more general than the Euclidean
space or affine spaces known from algebra and elementary geometry, although
they look locally like Euclidean spaces and have various applications in me-
chanics, theoretical physics etc. Together with a distinguished class of spaces,
mathematics is interested also in the family of mappings that preserve the typi-
cal properties of spaces from the class under consideration. To describe our field
of interest we need also concepts from metric spaces, topology and the theory
of continuous functions. Let us recall some basic notions and notation.

As well known from linear algebra, the real n-dimensional vector space R
n

is a family of all n-tuples x = (x1, . . . , xn) of real numbers that are added and
multiplied by reals component-wise in a familiar way, which defines on R

n a lin-
ear structure of a finite-dimensional vector space. Besides the linear structure
the vector n-space Rn carries a natural inner product, the dot product x · y and
the induced norm ‖x‖:

x · y = x1y1 + . . .+ xnyn and ‖x‖ = √x · x =

√
x12 + . . .+ xn2 .

By the Euclidean space En we usually mean just Rn endowed with this dot
product. The dot product defines naturally a metric d(x, y) = ‖x − y‖, and
the metric induces the metric topology on R

n, or on E
n: a subset O ⊂ R

n is
open if and only if for any point x ∈ O, there exists an open ball B(x, r) with
center x and radius r > 0 which lies entirely in O; it can be seen that this
metric topology coincides with the product topology of the Cartesian product
R× . . .× R where the reals R are taken with the natural norm. Note that this
metric is translation invariant in the following sense: d(x + z, y + z) = d(x, y)
holds for all x, y, z from Rn; note that this property is common to all metric
spaces arising from norms.

Definition 2.1 Ametric space is a setX together with a function d fromX×X
to the non negative real numbers, such that for each x, y, z ∈ X :

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z);

the function d is called a metric on X .

51
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A pseudometric d satisfies (2) and (3) from the definition of metric but (1)
is substituted by a weaker condition, namely d(x, y) = 0 if x = y (that is, even
distinct points might have zero distance).

Given a point x in a metric space X and a real number r > 0, the open ball
(= disc) of radius r about x (with the center x) is a subset

B(x, r) = {y ∈ X : d(x, y) < r}.

We call a subset O ⊂ X open in metric space X if for each point x ∈ O there
exists an open ball about x in X which is entirely in O.

If A ⊂ X we introduce a diameter of A: diamA = sup{d(x, y) : x, y ∈ A}.
In a metric space X , a subset A ⊂ X is bounded if it has finite diameter.

2.1.1 A couple of examples

Example 2.1 On at least two-element set, the so-called discrete metric is de-
fined by d(x, y) = 1 for x 6= y, d(x, y) = 0 for x = y.

Example 2.2 A normed real vector space V with the norm ‖ · ‖ determines a
natural metric d defined by d(u, v) = ‖u− v‖.

Example 2.3 Let X = C0〈a, b〉 be the set of all real functions continuous on
a closed interval 〈a, b〉. We can define a metric on X directly by

d(f, g) = sup{|f(x)− g(x)| : x ∈ 〈a, b〉} for f, g ∈ X.

This metric comes from a norm. On X , the linear operations f 7→ cf and
(f, g) 7→ f + g are defined pointwise which turn X into an infinite-dimensional
vector (linear) space. If we define ‖f‖ = maxx∈〈a,b〉 |f(x)| for f ∈ X we have a
norm on X that gives just the metric d. Similarly for the space of continuous
complex functions.

There are metrics on vector spaces that do not arise from any norm.

Example 2.4 The set X of all real sequences {an}∞n=1 is a real infinite-dimen-

sional vector space. The function ̺(a, b) =
∞∑

n=1

1

2n
· |an − bn|
1 + |an − bn|

is a metric.

Suppose that the metric ̺ comes from some norm ‖ · ‖ in the way described
above. Then ‖x‖ = ̺(x, 0) for each x ∈ X and ‖ax‖ = |a| · ‖x‖, that is, ̺ have
to satisfy

̺(ax, 0) = |a| ̺(x, 0) for all a ∈ R, x ∈ X.

Take x = (1, 0, 0, . . . ), then ax = (a, 0, 0, . . . ) for any a ∈ R. Now ̺(x, 0) = 1
4 ,

̺(ax, 0) =
1

2
· |a|
1 + |a| . But this equality does not hold in general: if we take

a = 2 then ̺(2x, 0) = 1
3 , on the other hand 2̺(x, 0) = 1

2 , a contradiction.
Therefore such a norm cannot exist.
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Example 2.5 For two points P = (x1, x2) and Q = (y1, y2) in R2, the formulae

d1(P,Q) =
√
(x1 − y1)2 + (x2 − y2)2,

d2(P,Q) = max{|x1 − y1|, |x2 − y2|},
d3(P,Q) = |x1 − y1|+ |x2 − y2|

define three metrics which provide the plane with three distinct structures as
a metric space. Yet the family of all open sets is the same in all three cases.
We can consider them “equivalent”. Not only open sets, but of course also all
concepts based on open sets are the same: closed sets, as their complements,
etc.; also convergence of sequences is the same. It makes us think what is
“behind” this fact.

Note that d3 is sometimes called a taxicab distance function (metric).

The figure shows the ball
of radius 1, central at the
origin, for each of these
three metrics.

2.1.2 Euclidean space

Similar metrics can be introduced in R
n for arbitrary n ∈ N; the first metric

space is usually called Euclidean or cartesian space; the three metrics define the
same open sets again.

Let us give first a bit of motivation. Let f be a map of the Euclidean
space E

m to E
n. The classical “ε, δ” definition of continuity for f generalizes

continuity of a real-valued function of one real variable well-known from the
Calculus and goes as follows: f is continuous at x ∈ Em if given any ε > 0 there
exists δ > 0 such that ‖f(y)− f(x)‖ < ε whenever ‖y − x‖ < δ, y ∈ E

m.

More geometric speaking, f is continuous if for any open ballD′ = B(f(x), ε)
in E

n about f(x) with radius ε > 0 there exists an open ball D = B(x, δ) in
E
m with center x and radius δ > 0 which is mapped into B(f(x), ε) under f :

f(D) ⊂ D′. The function is continuous if it is continuous in each point.

Call a subset U of Em a neighbourhood of the point x ∈ E
m if for some real

number r > 0 the open ball of radius r and center x lies entirely in U . It is
easy to rephrase the above definition of continuity as follows: f is continuous if
given any x ∈ Em and any neighbourhood U of the image f(x) in the space En,
then the inverse image f−1(U) is a neighbourhood of the point x in E

m.

More generally, we can proceed similarly in any metric space. A map f :X→Y
of a metric space (X, ̺) to a metric space (Y, σ) is continuous if for any x ∈ X
given ε > 0 there exists δ > 0 such that σ(f(x), f(z)) < ε whenever ̺(x, z) < δ,
z ∈ X . Again, a neighbourhood of the point x ∈ X is a subset which con-
tains a disc centered at x, and continuity can be rephrased using the concept of
neighbourhoods.
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2.1.3 Natural topology on metric space

Note that defining neighbourhoods in Euclidean spaces or metric spaces, we
use very strongly the distance function. In constructing an “abstract space”
we would like to retain the concept of neighbourhood but rid ourselves of any
dependence, of the definition of the space itself as well as of continuity of maps
between abstract spaces, on a distance function. Just this point is crucial: any
point of the “space” should be endowed with a family of “neighbourhoods”
settled in such a way that a “good” definition of continuity can be expected.
Note that Maurice Fréchet, the French mathematician who created the first
definition of an abstract topological space, used just this way, namely generating
topology by neighbourhoods.

We ask for a set X and for each point x ∈ X a nonempty collection U(x)
of subsets of X , called neighbourhoods of x, that are required to satisfy the
following four conditions (axioms):

(a) x lies in each of its neighbourhoods.

(b) The intersection of two neighbourhoods of x is itself a neighbourhood of
the point x.

(c) If V is a subset of X which contains U and U is a neighbourhood of x,
then V is a neighbourhood of x.

(d) If U is a neighbourhood of x then there exists a neighbourhood O of x
such that O ⊂ U and O is a neighbourhood of z whenever z ∈ O; O is
an interior of U .

This whole structure can be called a topological space, and we say that the
assignment of a collection of neighbourhoods satisfying (a) – (d) to each point
x ∈ X gives a topology generated by a neighbourhood system on the set X .

We call a subset O of X open in this topology if it is open neighbourhood of
each of its points. The union of any collection of open sets is open by (c), and
the intersection of any finite number of open sets is open by axiom (b) (on the
other hand, the intersection of an infinite collection of open sets need not be
open). The empty set is open, as is the whole space X . Axiom (d) tells us that
given a neighbourhood U of a point x, the interior of U is an open set which
contains x and which lies in U . To understand better motivation for the last
condition we can take the closed ball {z ∈ E

m : d(x, z) ≤ r} as U , then as O we
can take the open ball {z ∈ E

m : d(x, z) < r}.

Although the above concept was formulated quite comprehensible and fits
well our idea what a space ought to be, unfortunately such a definition is not so
practical to work with. It was found out that an equivalent, more manageable,
set of axioms can be given. During the time it was discovered that more conve-
nient, especially in proofs, is to start with the idea of open set, then build up a
collection of neighbourhoods for each point, and to show that both approaches
are equivalent. Then all concepts build up on open sets will be topological
notions.
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2.1.4 Isometry of metric spaces

As morphisms between metric spaces, we prefer those maps which preserve
distances between points. A map of metric spaces f : (X, ̺) → (Y, σ) is an
isometry if ̺(x, y) = σ(f(x), f(y)) for every pair x, y ∈ X . Any isometry is a
continuous map with continuous inverse (i.e. homeomorphism). All isometries
of the given metric space X with map composition operation constitute a group
iso(X), the isometry group of the space.

Example 2.6 Translations, rotations, symmetries, skew symmetries (and the
identity map) are well-known isometries in E2.

2.1.5 Abstract topological spaces, topology

Let X be a given set. Recall that the family of all subsets in X is called a
potence set of X and is denoted by P(X).

Definition 2.2 The system τ of subsets in X , τ ⊆ P(X), is called a topology
on X if the following three axioms hold:
(O1) The empty set ∅ and the whole space X belong to τ .
(O2) The intersection of two55) of sets from τ is in τ .
(O3) The union of any family of sets from τ is in τ .

The pair (X, τ) is called a topological space.

The sets from τ are called open. Given a point x ∈ X we shall call a subset
U of X a neighbourhood of x if we can find an open set O such that x ∈ O ⊂ U .
For a fixed x ∈ X , the set of all neighbourhoods of x in the given topology is
denoted by U(x).

We can verify that this definition of neighbourhood makes X into a topolog-
ical space according to the above “neighbourhood” definition. For each point,
at least X is a neighbourhood of x. If U1, U2 are neighbourhoods of x and
O1, O2 are the corresponding open sets satisfying x ∈ O1 ⊂ U1, x ∈ O2 ⊂ U2,
then x ∈ O1 ∩ O2 ⊂ U1 ∩ U2 where O1 ∩ O2 is open. Therefore U1 ∩ U2 is a
neighbourhood of x, and we have checked axiom (b). To check (a) and (c) is
easy. Similarly the converse implication.

Theorem 2.1 A subset of a topological space is open if and only if it is a
neighbourhood of each of its points.

2.1.6 Examples of topological spaces

Example 2.7 As a well known example of topological space, recall the set of
real numbers X = R with natural topology: a subset O in R is open when with
each point r ∈ O, an open interval (r−ε, r+ε) is in O. Notice that this natural
topology is just the metric topology corresponding to d(a, b) = |a− b|, a, b ∈ R.

55)And consequently of any finite number.
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Example 2.8 For our purpose, particularly the real n-dimensional space Rn

with natural topology is important; this topology arises as the product topology
of R× . . .×R (n copies), and can be introduced directly as follows. Each point
of the space R

n is an ordered n-tuple (x1, x2, . . . , xn) of real numbers x1, x2,
. . . , xn. Let us consider n open intervals (ai, bi) in the reals, i = 1, 2, . . . , n.
An open coordinate parallelepiped, or open coordinate box in Rn is the set

Kn = { x(x1, x2, . . . , xn) | ai < xi < bi, i = 1, 2, . . . , n}.

We consider a subset O ⊆ R
n open in the “product” topology if for any point

x ∈ O there is an open coordinate box Kn such that x ∈ Kn ⊆ O. We can easily
check that the family of such subsets O satisfies (O1) – (O3), and hence is a
topology in R

n.
The same topology appears to be induced by the Euclidean metric of Rn

as a metric space. In fact, for any pair of points x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in Rn, introduce their Euclidean distance by the formula

̺(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

A pair (Rn, ̺) is a metric space denoted by E
n and called n-dimensional Eu-

clidean space. As above, we can consider a subset O ⊆ R
n open if for any point

x ∈ O there exists an open ball B(x, r) such that B(x, r) ⊂ O.
The family of all such open sets satisfies the defini-

tion of a topology in Rn, and is called natural, or met-
ric topology (induced by the Euclidean metric). It is easy
to prove that the “product” topology of the n-dimensional
real space Rn = R×· · ·×R and the natural topology of the
n-dimensional Euclidean space (Rn, ̺) coincide (hint: to
any ball centred at x, a cube centred in x can be inscribed, and vice versa).

Example 2.9 More generally, any metric space (X, d) endowed with its natu-
ral metric topology, is a topological space. Recall how the metric d defines a
topology. We consider a subset of X open in the metric topology if and only
if it is open with respect to the metric d, i.e. a subset O ⊆ M is open in the
metric (natural) topology when with each of its points, it includes some open
ball B(x, r) centered at the point x. We check directly that (O1) – (O3) hold.

Example 2.10 Normed real vector spaces are topological spaces. Any real
vector space with a norm (V, ‖ · ‖) has a natural metric d(x, y) = ‖x − y‖ for
x, y ∈ V . This metric turns V to a topological space if we take on V a metric
topology corresponding to d, called topology of norm on V .

Example 2.11 Real vector spaces with scalar product are topological spaces. If
(V, ( · , · )) is a real vector space with scalar product we define the corresponding
norm by ‖x‖ = (x, x)1/2 for each x ∈ V and consider the topology of norm on V.

Example 2.12 Any nonempty set X together with the family of open sets
{∅, X} is a topological space, both the topology and the space are called
antidiscrete or indiscrete. Every subset A ⊂ X is open-and-closed [66, p. 31].
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Example 2.13 Any nonempty set X with the family of open sets τ = P(X) is
a topological space, both the topology and the space are called discrete. Note
that the discrete topology is generated by the discrete metric.

Example 2.14 Let X be any set. If we take as open sets a family of all
subsets having finite complement we obtain on X the so-called topology of finite
complements .

Example 2.15 Let X be an infinite set. If we take, as open sets, a family
of all subsets having countable complement we obtain the so-called topology of
countable complements on X .

Example 2.16 Assume the set X = C0〈a, b〉 of all real functions continuous on
〈a, b〉. Open sets are just all subsets of X that, with any of its elements, say f0,
contain, for a suitable ε > 0, all f ∈ X such that sup{|f0(x) − f(x)| : x ∈
〈a, b〉} < ε. This topology is a metric topology induced by the metric from
Example 2.3, or, if we consider X as a vector space, induced by the norm
‖f‖ = sup{f(x) : x ∈ 〈a, b〉} = max{f(x) : x ∈ 〈a, b〉}. Similarly for continuous
complex functions on a closed interval.

Example 2.17 Let X be a set ordered by a relation of ordering ≤. The so-
called interval topology on X consists of subsets which contain, with each of its
points, a set of the form {z ∈ X : a ≤ z ≤ b}, called interval , for some a, b ∈ X .

Example 2.18 Let A be a commutative ring with unit. Recall that an ideal
I ⊆ A in A, I 6= A is a prime-ideal if a · b ∈ I =⇒ a ∈ I or b ∈ I.

The spectrum Spec(A) of the ring A is a set of all prime-ideals in A. On
Spec(A) we define a topology as follows. For any fixed ideal J ⊆ A (not neces-
sarily prime) take the set OJ = {P ∈ Spec(A) : J 6⊆ P}.

Then the system τ = {OJ : J is an ideal in A distinct from A} is a topology
on Spec(A). Any ideal contains at least zero element, hence O(0) = ∅. Further
OA = Spec(A), therefore (O1) holds. Let OI ,OJ be from τ ,

OI = {P ∈ Spec(A) : I 6⊆ P}, OJ = {P ∈ Spec(A) : J 6⊆ P}.

Then the intersection can be written as OI ∩ OJ = OK where K = IJ is
the product of ideals. For a system of ideals {OIα : α ∈ A} the union of
corresponding sets is ∪

α
OIα = OL, where L =

∑
α∈A

Iα is the sum of ideals.

2.2 Generating of topologies

2.2.1 Closed sets

Complements of open sets play also an important role, and have dual properties.

Definition 2.3 A subset F⊂X is called closed, if its complement X\F is open.
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Note that due to the de Morgan formulae the following can be proved:
(F1) the empty set ∅ and the set X are closed;
(F2) the intersection of any system of closed sets is a closed set;
(F3) the union of any finite number of closed sets is a closed set.

There is a topology generated (uniquely) by the system of closed sets. If a
system F of subsets of X satisfies (F1) – (F3) then the set of complements X \F
of members F from the system F has the properties (O1) – (O3) of open sets
and is called the topology generated on X by the family of closed sets F .

Example 2.19 In the classical algebraic geometry the so-called Zariski topology
was defined for affine and projective varieties. Let An be an affine space. The
Zariski topology is defined by specifying its closed sets: the set F of all algebraic
sets (affine varieties) in An satisfies (F1) – (F3). Similarly, the projective Zariski
topology in the projective space is given by Zariski-closed sets which are just
all projective varieties (zero sets of homogeneous ideals).

2.2.2 Closure operator. Accumulation points

Let A be a subset of X . The intersection of all closed subsets in X containing A
is called the closure of A and is denoted as A; i.e. the closure of A is the
smallest close set containing A. A point x ∈ X is from A if and only if each
neighbourhood of x intersects A.

The concept of a topological space can be considered as an axiomatization
of the notion of the “closeness” of a point to a set: a point is close to a set if it
belongs to it closure.

On the other hand, a point x ∈ X is called an accumulation point or limit
point of A if every neighbourhood of x contains at least one point of A \ {x},
i.e. each neighbourhood of x has a common point with A which is different
from x. The family of all accumulation points of A in X is the derived set of A
and is denoted here as A′.

The following properties hold true:
1. The closure A of a subset A ⊂ X is the union of A and all its accumulation

(limit) points; A = A ∪A′.
2. A set is closed if and only if it contains all its accumulation points.
3. A set is closed if and only if it is equal to its closure.

A set whose closure is the whole space is said to be dense in the space. For
example, the set of all points in E

3 with rational coordinates is dense in E
3.

A set A ⊂ X is co-dense if X \ A is dense in X , and nowhere dense if A is
co-dense, i.e. X \A is dense in X .

The closure operator A 7→ A in the given topology has the properties:

Theorem 2.2 (K. Kuratowski) Let A,B be subsets of the topological space
(X, τ). Then the following conditions hold:

(1) ∅ = ∅, (2) A ⊂ A, (3) A ∪B = A ∪B, (4) A = A.

It can be verified that the topology is by its closure operator uniquely de-
termined. That is, we have another way how to generate a topology:



2.2 Generating of topologies 59

Theorem 2.3 Let (X, τ) be a topological space and let cl :P(X)→ P(X) be a
map satisfying for any A,B ∈ P(X)

A ⊂ cl A, cl ∅=∅, cl X =X, cl(A ∪B)= cl A ∪ cl B, cl(cl A)= cl A.

Then there exists a unique topology on the set X such that cl A = A holds for
all A ∈ P(X).

Indeed, if we take all sets G ∈ P(X) such that cl(X \ G) = X \ G we get
just the announced topology.

2.2.3 Interior, exterior, boundary

Let A ⊂ X be a subset in a topological space. Then every point x ∈ X has
exactly one of the following three properties (we speak about interior, exterior
and boundary points of A, accordingly; alternative definitions are possible):

(1) there exists a neighbourhood of x which is contained in A;
(2) there exists a neighbourhood of x which is contained in X \A;
(3) every neighbourhood of x intersects both the sets A and X \A.
The union of all open subsets in the space X that are contained in A is called

the interior of A and is denoted by Int A; a point x lies in the interior of A (is
an interior point of A) if and only if A is a neighbourhood of x; equivalently, if
and only if x has the property (1). The points of Int A are interior points of A.

Theorem 2.4 A subset A ⊆ X is open if and only if A = Int A.

We can introduce exterior of A as Ext A= Int(X\A); a point x∈Ext A if and
only if it satisfies (2), and is called an exterior point of A. Obviously, Ext ∅ = X .
Similarly as above, it is possible to take interior (or exterior) as an axiomatic
notion.

Fundamental properties of the interior operator are for every A,B ∈ P(X):

IntA⊂A, Int ∅ = ∅, Int X = X , Int(IntA) = IntA, IntA ∩ IntB = Int(A ∩B).

The family of open sets for the topology generated by interior operator consists
just from the sets for which Int A = A.

The set δA = A− Int A = A ∩ (X\A) is called a boundary or frontier of A.
The points from δA are called boundary (or frontier) points of A. A point x
belongs to δA if and only if it has the property (3).

Among others, the following identities (useful in proofs) can be checked for
a subset A of a topological space:

Int A ⊂ A ⊂ A = A ∪ A′ = A ∪ δA = Int A ∪ δA,

A \ δA = Int A, X = Int A ∪ δA ∪ Ext A (disjoint union),

δA = A ∩ (X \A) = δ(X \A), δ∅ = ∅,

∅ = Int A ∩ δA = δ(X \A) ∩ Ext A = Int A ∩ Ext A = δA ∩ Ext A.

Theorem 2.5 A subset A of a topological space satisfies

X \A = Int(X \A), X \ Int A = (X \A).
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2.2.4 The lattice of topologies. Ordering

On the same set X , more (or even many) topologies can be defined, and they
are naturally ordered by inclusion of corresponding systems of open sets.

Let τ and τ̃ be two topologies, i.e. families of open sets satisfying (O1)–(O3),
on the same set X . We say that τ is finer , or bigger than τ̃ when the systems
satisfy τ̃ ⊆ τ ; in this case, τ̃ is called coarser or smaller . Of course there are
uncomparable topologies if the underlying set is at least two-element.

From the algebraic point of view, the family of all topologies on the same
underlying set, ordered by inclusion, forms a lattice. Indeed, the antidiscrete
topology is smaller than any other topology on the same set while discrete
topology is the biggest one.

Example 2.20 On a one-element set X = {a} there exists a unique topology;
the discrete and antidiscrete topology coincide. On a two-element setX = {a, b}
there are four distinct topologies:

O0 = {∅, {a, b}}, O1 = {∅, {a}, {b}, {a, b}},
O2 = {∅, {a}, {a, b}}, O3 = {∅, {b}, {a, b}}.

Here O0 is the smallest one, O1 is the biggest one, O2 and O3 are uncompara-
ble. It is interesting to notice how the number of topologies increases with the
increasing number of elements of the underlying set X .

2.2.5 Metrization problem

A natural question arises in connection with examples: if we are given a topology
is it possible to generate it by some metric, or at least pseudometric? The answer
is negative.

A topological space that can be assigned a metric inducing the given topology
is called metrizable.

The antidiscrete topology on at least two-element set is not metrizable.

The topologies O2 and O3 on a two-element set from Example 2.20 are not
metrizable (because they are not Hausdorff, which we explain later).

The discrete space is metrizable by the discrete metric.

A great deal of work in general topology was done during examining metriz-
able spaces, their subspaces and metrizability conditions. Metrization prob-
lem was solved in 1951 by a Canadian mathematician R.H. Bing. To be able
to formulate necessary and sufficient conditions for a topological space to be
metrizable we need to know more about special types of bases and about sepa-
ration properties which we mention later. Metrization theorems and properties
of metrizable spaces are postponed to next sections.

2.2.6 Cover, subcover

Let (X, τ) be a topological space and A ⊆ X a subset. A collection of (open)
subsets in X : U = {Uα : Uα ∈ τ, α ∈ J }, J is some index set,

is an (open) cover (or covering) of A if A ⊂ ∪α∈JUα.
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Note that the equality holds in the last formula when X = A, i.e. X=∪α∈JUα.
If {Uα : Uα ∈ τ, α ∈ J } is (open) cover of X , under its (open) subcover we

mean any system {Uα : Uα ∈ τ, α ∈ J̃ } where the index set J̃ ⊆ J .
An (open) cover {Vβ : Vβ ∈ τ, β ∈ K} is a refinement of the (open) cover

{Uα : Uα ∈ τ, α ∈ J } of X if each (open) subset Vβ is contained in some Uα.

2.2.7 Bases. Countability Axioms

As we have seen, a topology on a set X can be given by distinguishing a system
τ of subsets in X (called “open”) satisfying the axioms (O1) – (O3), but it is
not the only possibility. We have already mentioned that a topology can be
determined, or generated, also in some other way: by the set of closed sets
provided they satisfy (F1) – (F3), by the families of neighbourhoods U(x) of
points x from the topological space satisfying (a) – (d), or by the interior or the
closure operator. Here we show yet another possibility, namely to give a suitable
part of the family of open sets from which all open sets are generated by set
union.

Definition 2.4 Let (X, τ) be topological space. A neighbourhood base of a
point x ∈ X , or a local base of x ∈ X is a subset B(x) of the set U(x) of all
neighbourhoods of x such that every neighbourhood of x contains a neighbour-
hood in B(x).

Example 2.21 Let X = Rn, or more generally, let X be any metric space.
The set of open balls with radius 1/n, n = 1, 2, . . . around a fixed point x forms
a (countable) neighbourhood base of x.

Definition 2.5 A base of the topology τ on X is a system B of subsets in X
such that

1. B ⊂ τ .
2. For any point x ∈ X and any neighbourhood U of x there is a subset
V ∈ B such that V ⊂ U .

We can give another characterization: a subsystem B of τ forms a base of
the topological space (X, τ) if and only if any non-empty set from τ can be
expressed as a union of the sets from the system B.

Obviously, a topological space can have many bases. The following theorem
characterizes systems of sets that can serve as a base for some topology.

Theorem 2.6 A family of sets B is a base of a topology on a set X=∪{B :B∈B}
if and only if for any A,B ∈ B and for any x ∈ A ∩B, there exists C ∈ B such
that x ∈ C ⊂ A∩B holds. The topology is uniquely determined by its base, and
it is in fact the coarsest (smallest with respect to set inclusion) topology on X
containing the given base B.

Example 2.22 Let X = R. The set of intervals B = {〈a, b) : a < b, a, b ∈ R}
is a base for a topology on R, called Sorgenfrey topology. The corresponding

topological space is a Sorgenfrey straightline. Notice that
∞∪
n=2

(a+ b−a
n , b)=〈a, b).
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The Sorgenfrey topology is finer than the usual topology on R.

As mentioned above not every system is a base of a topology. The following
weaker concept can be viewed as a compensation, it simplifies considerations
concerning possibility of generating a topology by a system of sets.

Definition 2.6 A subbase of the topology τ on X is a system S of subsets in X
such that

1.S ⊂ τ . 2. Every open set from τ is a union of finite intersections of sets in S.

Every base of topology is also a subbase.

Example 2.23 The system of all intervals (a,∞) and (−∞, a), a ∈ R is a
subbase of the usual topology of R but not its base.

Theorem 2.7 Any system S of sets is a subbase of a uniquely defined topology
on the set X =

⋃ {S : S ∈ S}.

Indeed, we take all possible finite intersections of sets from S and use Theo-
rem 2.6 to check that they form a base.

The definition of a topological space is very general. Not many interesting
theorems can be proved about all topological spaces. Various classes of topo-
logical spaces are studied, ranging from fairly general to more and more special.
One type of restrictions is concerned with cardinality of bases.

Recall that a system of sets is countable if the system includes at most a
countable family of members (i.e. there is a one-one map of elements of the
system into natural numbers N).

Definition 2.7 A topological space satisfies the first countability axiom, and is
called first countable, if every point possesses a countable neighbourhood base.

A space satisfies the second countability axiom, and is called second count-
able, if it possesses a countable base (of the topology).

A topological space X is called Lindelöf if each open cover of X has a
countable subcover.

If a space contains a countable dense subset it is called separable.

Theorem 2.8 Any metric (metrizable) space is first countable.

Theorem 2.9 If the space is second countable then each its base has a countable
subbase.

The second countability axiom is the strongest one from the list of conditions
just mentioned:

Theorem 2.10 If the topological space is second countable then it is first count-
able, Lindelöf and separable.
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In the second countable space, all sets containing the fixed point x form
obviously a countable neighbourhood base of x. To construct a countable dense
subset we choose one element from each member of a fixed countable base (we
need the Axiom of Choice); to prove the Lindelöf property is also possible.
However in metrizable spaces the following holds:

Theorem 2.11 If the topological space is metrizable then second countability,
Lindelöf property and separability are equivalent.

Before giving more details it is convenient to introduce new concepts and
more terminology.

2.2.8 Sequences in topological spaces, nets

As far as the role and behaviour of convergent sequences is concerned there is
a great difference between first coutable spaces and general topological spaces.

Assume a topological space X , a sequence {xn}n∈N of points from X , i.e. xn
belongs to X for all n ∈ N, and a fixed point x ∈ X .

We say that the sequence {xn} converges to the point x in X , or that x is a
limit point of the sequence {xn} if for any neighbourhood U ∈ U(x) of x there
exists a natural number n ∈ N such that for all m ≥ n, m ∈ N, the point xm
belongs to the neighbourhood U ; we use the usual notation lim

n→∞
xn = x.

We say that x ∈ X is an accumulation point of a sequence {xn} if for any
neighbourhood U and for any natural n ∈ N there exists m ≥ n, m ∈ N such
that xm ∈ U .

Similarly as in metric spaces (particularly as in real numbers) we can prove:

Theorem 2.12 If X is a first countable topological space, A ⊂ X, x ∈ X, then
the following holds:

(1) the point x belongs to the closure A if and only if there exists a sequence
{xn} of points from A, xn ∈ A, such that lim

n→∞
xn = x;

(2) the point x is an accumulation point of the sequence {xn} if and only if
there exists a subsequence {xkn} of {xn} such that x is its limit point;

(3) the point x is an accumulation point of the set A if and only if there exists
a sequence {xn} of points from the set A \ {x} such that x = lim

n→∞
xn.

If we omit the assumption on first countability the theorem is no more true
(we can construct examples [102]), because convergence of sequences depends
not only on the sequence itself but also on the type of ordering of the local base
for the point x. To substitute sequences in general topological spaces, we need
to find some more general concept which would “work”.

Recall that the relation of directing on a set D is an ordering of D which
satisfies: if d and d′ belong to D then there exists d′′ ∈ D such that d ≤ d′′ and
d′ ≤ d′′, and the pair (D,≤) is a directed set .

Definition 2.8 A net {xd : d ∈ (D,≤)} is an arbitrary function (map) from a
non-empty directed set (D,≤) to the topological space X .
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A point x ∈ X is said to be a limit point of a net {xd : d ∈ D} in X if for
every neighbourhood U of x there exists an element d0 ∈ D such that for any
d ∈ D satisfying d0 ≤ d, xd belongs to U; we write x = lim

d∈D
xd.

To demonstrate applications of the concept let us mention:

Theorem 2.13 Let A be a subset of a topological space X. A point x ∈ X
belongs to the closure A if and only if there exists a net {xd : d ∈ D}, xd ∈ A
for d ∈ D, such that x = lim

d∈D
xd.

Also subnets and accumulation points of a net can be introduced (for more
details, [102]).

2.3 Continuous maps

In the family of maps from one topological space to the other, we prefer maps
which “preserve topological structure.” We start with continuous maps and
show that they “pull back” open sets, i.e. preserve topological structure in one
direction. Then we pass to one-one onto continuous maps with continuous in-
verse which peserve topological structure in both directions, and are topological
equivalences.

After some experience with generalizing continuity of a real-valued function
of real variable(s) to continuity of maps between metric spaces, it might seem
quite natural to formulate continuity of maps between topological spaces also in
terms of neighbourhoods. Recall that a subset U of (X, τ) is a neighbourhood
of a point x ∈ X if there is an open subset O ⊆ X such that x ∈ O ⊂ U . If U
itself is an open set we speak about an open neighbourhood .

2.3.1 Continuous maps of topological spaces

Let (X, τ) and (X ′, τ ′) be topological spaces.

Definition 2.9 A map f :X → X ′ is continuous in the point x ∈ X if for any
neighbourhood U ′ of the point f(x) ∈ X ′ there exists a neighbourhood U of
x ∈ X such that f(U) ⊂ U ′, i.e. f(y) ∈ U ′ for each y ∈ U .

A map f is continuous if it is continuous in all points of the set X .

It is convenient to have some criteria for continuity of maps formulated in
terms corresponding to various methods of defining or generating topologies.
The notion of continuity is particularly easy to formulate in terms of open sets.

Theorem 2.14 Let (X, τ), (X ′, τ ′) be topological spaces and f :X → X ′ a map
of X to X ′. The following properties are equivalent:

(1) f :X → X ′ is continuous;
(2) inverse images of all open subsets of X ′ (sets from τ ′) are open in (X, τ);
(3) inverse images of all closed subsets of X ′ are closed in (X, τ);
(4) inverse images of all members of a subbase for X ′ are open in X;
(5) inverse images of all members of a base for X ′ are open in X;
(6) for every subset A ⊂ X we have f(A) ⊂ f(A);
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(7) for every subset B ⊂ X ′ we have f−1(B) ⊂ f−1(B);
(8) for every point x ∈ X and every net {xd : d ∈ D} in X with x = lim

d∈D
xd,

the net of images {f(xd) : d ∈ D} in X ′ has a limit point equal f(x).

Further equivalences can be found e.g. in [66, p. 47].

Note that a continuous real-valued function of one real variable is continuous
according to our new definition, [66, p. 49]. Important point is that continuity
is preserved under maps composition; in the proof, the equality (gf)−1(A) =
f−1(g−1(A)) is used:

Theorem 2.15 The composition of two continuos maps is continuos.

Note that any map f :X → X ′ is continous whenever the topological spaceX
is discrete, or whenever X ′ is antidiscrete.

Theorem 2.16 Let X,X ′ be topological spaces and let A ⊆ X have a subspace
topology. Suppose f :X → X ′ is continuous. Then the restriction f |A:A → X ′

is continuous.
Theorem 2.17 (Glueing Lemma) Let X and Y be topological spaces, X =
A ∪ B, where A and B are closed (open) subsets of X. Let f1:A → Y and
f2:B → Y be continuous maps such that f1(x) = f2(x) for all x ∈ A ∩B.

Then the map g:X → Y defined by g(x) =

{
f1(x) for x ∈ A,
f2(x) for x ∈ B,

is continuous.

Note that without any assumption on A and B, the theorem is false.

2.3.2 Homeomorphisms

Together with topological spaces, we consider maps (“morphisms”) that preserve
topological structure:

Definition 2.10 A map f :X → X ′ is a homeomorphism (or a topological map)
if the following conditions are satisfied:

1. f is one-one and onto map, i.e. there exists an inverse map f−1;
2. both the maps f and f−1 are continuous.

In this case the spaces X and X ′ are called homeomorphic which is denoted by

X ∼= X ′.

Since the identity map idX :X → X is a homeomorphism, the composition gf
of two homeomorphisms f and g as well as the inverse map f−1 are again
homeomorphisms the following can be checked:

1. X ∼= X – reflexivity,
2. X ∼= X ′ ⇒ X ′ ∼= X – symmetry,
3. X ∼= X ′ and X ′ ∼= X ′′ ⇒ X ∼= X ′′ – transitivity.

Therefore the binary relation “ ∼= ” on the class of all topological spaces is an
equivalence relation. Under homeomorphisms, open (closed) sets are mapped
again onto open (closed) sets, hence the map f induces one-one onto corre-
spondence between the topologies of X and X ′. The topology of two spaces
belonging to the same equivalence class is in a sense the same. That is why we
identify homeomorphic spaces.
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Theorem 2.18 Let (X, τ), (X ′, τ ′) be topological spaces and f :X → X ′ a map
of X to X ′. The following properties are equivalent:

(1) f :X → X ′ is a homeomorphism;
(2) G is open in τ if and only if f(G) is open in τ ′;
(3) F is closed in τ ′ if and only if f−1(F ) is closed in τ ;
(4) O is open in τ ′ if and only if f−1(O) is open in τ ;
(5) A is closed in τ if and only if the image f(A) is closed in τ ′;
(6) U is a neighbourhood of x ∈ X if and only if f(U) is a neighbourhood of

f(x) ∈ X ′;
(7) for every subset A ⊂ X we have f(A) = f(A);
(8) for every net {xd : d∈D} in X,

x = lim
d∈D

xd holds if and only if f(x) = lim
d∈D

f(xd).

Further equivalences can be found e.g. in [66, p. 54]. Continuous maps and
homeomorphisms of abstract spaces were first considered by M. Fréchet (1910).

If f :X → Y is a one-one map of topological spaces, and if f :X → f(X) is
a homeomorphism when we give f(X) the induced topology from Y, we call f
an embedding of X to Y .

Recall that a map between topological spaces is open (closed) if the image
of each open (closed) set is open (closed).
Theorem 2.19 A one-one onto map of topological spaces is a homeomorphism
if and only if it is continuous and open.

2.3.3 Topological invariants

If a property of a topological space is preserved under homeomorphisms it is
called a topological property or a topological invariant .

The object of topology is to study topological properties. Roughly, every
property defined in terms of open sets and in terms of set theory is a topological
invariant.

We should say at once that there is no hope of classifying all topological
spaces. However, there are techniques which anable us to decide whether two
spaces are homeomorphic or not. Showing that two spaces are homeomorphic
is rather a geometrical problem, involving the construction of a specific homeo-
morphism between given spaces, and the techniques used vary with the problem.

On the other hand, a problem of an entirely different nature is attempting
to prove that two spaces are not homeomorphic to one another: in this case we
look for topological invariants trying to find a topological property in which the
spaces differ. It might be one of the well-known topological properties (some
of them will be discussed in the sequel) such as countability, existence of spe-
cial bases, connectedness, compactness, separation properties, or an algebraic
structure, such as a group or ring constructed from the space (e.g. fundamen-
tal group, homotopy groups, homology groups), or number (e.g. Euler number
defined for the surface, Betti numbers56)) etc.

56)Eduard Čech, 1893-1960, was a Czech mathematician. His research interests included
projective differential geometry and topology. He is especially known for the technique known
as Stone-Čech compactification (in topology) and the notion of Čech cohomology. See [397].
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2.4 Constructions of new topological spaces from given spaces

2.4.1 Projectively and inductively generated topologies (initial and final)

Let us describe methods of generating topologies based on the concept of a con-
tinuous map. The following four constructions are particularly useful: (topo-
logical) product, subspace, sum (= disjoint union) and quotient. Note that first
two constructions are particular cases of a more general construction of the so-
called projectively generated topologies while sum and quotient are particular
cases of the so-called inductively generated topologies.
Theorem 2.20 Let X be a set, {(Yt, τt) : t ∈ T } a family of topological spaces
and {ft : t ∈ T } a system of maps where ft:X → Yt. In the class of all topologies
on X that make all maps ft continuos there exists a coarsest topology τ . One
of its bases consists of all sets of the form

⋃k
i=1 f

−1
ti (Vi) where Vi is open in Yti ,

t1, t2, . . . , tk ∈ T for i = 1, 2, . . . , k.

The topology τ is called the topology projectively determined, or projectively
generated, by the system of maps {ft : t ∈ T }, also initial topology.

Notice that all sets of the form f−1t (Vt) where Vt is open in Yt form a subbase
for the initial topology [66, p. 51].

Theorem 2.21 A map f of a topological space (X, τ) to a topological space
(X ′, τ ′) whose topology is generated projectively by a family of maps {ft : t ∈ T }
where ft is a map of X ′ to X ′t, is continuous if and only if every composite map
ftf is continuous for t ∈ T .

Now let us assume the “dual” situation, when all arrows in the considered
maps are reversed.

Theorem 2.22 Let X be a set, {(Yt, τt) : t ∈ T } a system of topological spaces
and {ft : t ∈ T } a system of maps where ft:Yt → X. In the class of all topologies
on X that make all maps ft continuos there exists a finest topology τ . Open sets
of this topology are exactly all sets G ⊆ X satisfying f−1t (G) ∈ τt for all t ∈ T .

The topology τ is called the topology inductively generated on X by the
system of maps {ft : t ∈ T }, also final topology.

Theorem 2.23 Let f : (X, τ)→ (X ′, τ ′) be a map of topological spaces and let τ
be a topology inductively generated on X by a family of maps {ft : t ∈ T } where
ft:Yt → X. Then the map f is continuous if and only if every composition f ◦ft
is continuous for t ∈ T .

2.4.2 Subspace and product

If A ⊆ X , we introduce a subspace topology on A induced by the topology τ
on X (or relative topology) as follows:

τA = {Y ∩ U : U ∈ τ}.
The topological space (A, τA) is called a topological subspace in (X, τ). It can be
checked that a subspace topology on a subset A ⊂ X of a topological space (X, τ)
is just the topology projectively generated by the one-element system {j} where
j:A→ X is the “canonical identical embedding”, j(y) = y for every y ∈ A.


